LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
B. Du; B. Du; L. Zhang; H. Xin (2012)
Publisher: Copernicus Publications
Journal: The International Archives of the Photogrammetry
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology
This thesis analyzes the anomalous measurement metric in high dimension feature space, where it is supposed the Gaussian assumption for state-of-art mahanlanobis algorithms is reasonable. The realization of the detector in high dimension feature space is by kernel trick. Besides, the masking and swamping effect is further inhibited by an iterative approach in the feature space. The proposed robust metric based anomaly detection presents promising performance in hyperspectral remote sensing images: the separability between anomalies and background is enlarged; background statistics is more concentrated, and immune to the contamination by anomalies.
  • No references.
  • No related research data.
  • No similar publications.