Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
C. H. Grohmann (2016)
Publisher: Copernicus Publications
Journal: ISPRS Annals of the Photogrammetry
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology
Global Digital Elevation Models (GDEMs) are datasets of vital importance for regional-scale analysis in areas such as geomorphology, [paleo]climatology, oceanography and biodiversity. In this work I present a comparative assessment of the datasets ETOPO1 (1’ resolution), GTOPO30, GLOBE, SRTM30 PLUS, GMTED2010 and ACE2 (30”) against the altitude of the world’s ultra prominent peaks. GDEMs’ elevations show an expected tendency of underestimating the peak’s altitude, but differences reach 3,500 m. None of the GDEMs captures the full range of elevation on Earth and they do not represent well the altitude of the most prominent peaks. Some of these problems could be addressed with the release of NASADEM, but the smoothing effect caused by moving-window resampling can only be tackled by using new techniques, such as scale-adaptative kernels and curvature-based terrain generalisation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Amante, C. and Eakins, B. W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. Technical report, NOAA Technical Memorandum NESDIS NGDC-24. 19 pp.
    • Arabelos, D., 2000. Intercomparisons of the global DTMs ETOPO5, TerrainBase and JGP95E. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 25(1), pp. 89 - 93.
    • Bamber, J., 2001. Greenland 5 km DEM, Ice Thickness, and Bedrock Elevation Grids.
    • Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G. and Weatherall, P., 2009. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30 PLUS. Marine Geodesy 32(4), pp. 355- 371.
    • Berry, P. A. M., 1999. Global digital elevation models fact or fiction? Astronomy & Geophysics 40(3), pp. 3.10-3.13.
    • Berry, P. A. M., Hilton, R., Johnson, C. P. D. and Pinnock, R. A., 2000. ACE: a new GDEM incorporating satellite altimeter derived heights. In: ERS-Envisat Symposium, Vol. SP-461, ESA, Gothenburg, Sweden.
    • Berry, P. A. M., Smith, R. and Benveniste, J., 2008. ACE2: the new global digital elevation model. In: IAG International Symposium on Gravity, Geoid & Earth Observation, IAG, Chania, Crete.
    • Berry, P., Garlick, J. and Smith, R., 2007. Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sensing of Environment 106(1), pp. 17 - 27.
    • Berthier, E., Arnaud, Y., Vincent, C. and Re´my, F., 2006. Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes. Geophysical Research Letters 33(8), pp. L08502.
    • Carter, J. R., 1992. The Effect Of Data Precision On The Calculation Of Slope And Aspect Using Gridded Dems. Cartographica: The International Journal for Geographic Information and Geovisualization 29, pp. 22-34.
    • Chow, T. E. and Hodgson, M. E., 2009. Effects of lidar postspacing and DEM resolution to mean slope estimation. International Journal of Geographic Information Science 23, pp. 1277-1295.
    • Cogley, J. G., 1985. Hypsometry of the continents. Zeitschrift fu¨r Geomorphologie Suppl.-Bd. 53, pp. 48.
    • Danielson, J. J. and Gesch, D. B., 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011-1073 ., pp. 1-34.
    • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and Alsdorf, D., 2007. The Shuttle Radar Topography Mission. Review of Geophysics 45, pp. RG2004.
    • Gesch, D. B., Verdin, K. L. and Greenlee, S. K., 1999. New land surface digital elevation model covers the Earth. Eos, Transactions American Geophysical Union 80(6), pp. 69-70.
    • GLOBE Task Team, Hastings, D. A., Dunbar, P. K., Elphingstone, G. M., Bootz, M., Murakami, H., Maruyama, H., Masaharu, H., Holland, P., Payne, J., Bryant, N. A., Logan, T. L., Muller, J. P., Schreier, G. and MacDonald, J. S., 1999. The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. Digital data base on the World Wide Web and CD-ROMs.
    • GRASS Development Team, 2014. Geographic Resources Analysis Support System (GRASS GIS) Software, Version 6.4.5. http://grass.osgeo.org, [accessed 20 January 2015].
    • Grohmann, C. H., 2015. Effects of spatial resolution on slope and aspect derivation for regional-scale analysis. Computers & Geosciences 77, pp. 111-117.
    • Grohmann, C. H., Smith, M. J. and Riccomini, C., 2010. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. Geoscience and Remote Sensing, IEEE Transactions on 49(4), pp. 1200-1213.
    • Harrison, C. G. A., Miskell, K. J., Brass, G. W., Saltzman, E. S. and Sloan, J. L., 1983. Continental hypsography. Tectonics 2(4), pp. 357-377.
    • Hastings, D. A. and Dunbar, P. K., 1998. Development & Assessment of the Global Land One-km Base Elevation Digital Elevation Model (GLOBE). ISPRS Archives 32(4), pp. 218- 221.
    • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15), pp. 1965-1978.
    • Hunter, J. D., 2007. Matplotlib: A 2D graphics environment. Computing In Science & Engineering 9(3), pp. 90-95. Available at http://matplotlib.sourceforge.net/, last access 06/06/2011.
    • Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G. and Weatherall, P., 2012. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters 39(12), pp. L12609.
    • Jasiewicz, J. and Stepinski, T. F., 2013. Geomorphons a pattern recognition approach to classification and mapping of landforms. Geomorphology 182, pp. 147 - 156.
    • Jenny, B., Jenny, H. and Hurni, L., 2011. Terrain Generalization with Multi-scale Pyramids Constrained by Curvature. Cartography and Geographic Information Science 38(2), pp. 110- 116.
    • Fielding, E. J., Isacks, B., Barazangi, M. and Duncan, C., 1994. How flat is Tibet? Geology 22, pp. 163-167.
    • Jet Propulsion Laboratory, 2014. U.S. Releases Enhanced Shuttle Land Elevation Data. Acessed Jan 15, 2015.
    • Kobrick, M. and Crippen, R., 2015. Merging Datasets to Produce NASADEM. In: Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, Milan, Italy.
    • Kobrick, M., Farr, T. G. and Crippen, R., 2011. A Merged Global Digital Topographic Data Set - Progress Report. NASA, Vancouver, Canada.
    • Krieger, G., Zink, M., Fiedler, H., Hajnsek, I., Younis, M., Huber, S., Bachmann, M., Gonzalez, J., Schulze, D., Boer, J., Werner, M. and Moreira, A., 2009. The TanDEM-X Mission: Overview and status. In: Radar Conference, 2009 IEEE, pp. 1- 5.
    • Llobera, M., 2001. Building Past Landscape Perception With GIS: Understanding Topographic Prominence. Journal of Archaeological Science 28(9), pp. 1005 - 1014.
    • Maizlish, A., 2003. Prominence and Orometrics: A Study of the Measurement of Mountains. (accessed 29 January 2015).
    • Maizlish, A., 2011. Peaklist.org. (acessed 29 January 2015).
    • Mayer, L., 2000. Application of digital elevation models to macroscale tectonic geomorphology. In: M. A. Summerfield (ed.), Geomorphology and Global Tectonis, John Wiley, pp. 15-27.
    • Miliaresis, G. C., 2006. Geomophometric mapping of Asia Minor from globe digital elevation data. Geografiska Annaler: Series A, Physical Geography 88(3), pp. 209-221.
    • Moore, I. D., Grayson, R. B. and Ladson, A. R., 1991. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes 5, pp. 3-30.
    • Neteler, M., Bowman, M. H., Landa, M. and Metz, M., 2012. GRASS GIS: A multi-purpose open source GIS. Environmental Modelling & Software 31, pp. 124-130.
    • New, M., Lister, D., Hulme, M. and Makin, I., 2002. A highresolution data set of surface climate over global land areas. Climate Research 21(1), pp. 1-25.
    • NGA - National Geospatial-Intelligence Agency, 2014. NGA releases high-resolution elevation data to public. Acessed Jan 15, 2015.
    • Oliphant, T., 2006. Guide to NumPy. Trelgol Publishing.
    • Podobnikar, T., 2012. Detecting Mountain Peaks and Delineating Their Shapes Using Digital Elevation Models, Remote Sensing and Geographic Information Systems Using Autometric Methodological Procedures. Remote Sensing 4(3), pp. 784- 809.
    • Python Software Foundation, 2013. Python Programming Language, version 2.7. Available at http://www.python.org/, last access 15/Aug/2013.
    • Sandwell, D. T. and Smith, W. H. F., 1997. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research 102, pp. 10039-10054.
    • Schmidt, G. A., Ruedy, R., Hansen, J. E., Aleinov, I., Bell, N., Bauer, M., Bauer, S., Cairns, B., Canuto, V., Cheng, Y., Del Genio, A., Faluvegi, G., Friend, A. D., Hall, T. M., Hu, Y., Kelley, M., Kiang, N. Y., Koch, D., Lacis, A. A., Lerner, J., Lo, K. K., Miller, R. L., Nazarenko, L., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Russell, G. L., Sato, M., Shindell, D. T., Stone, P. H., Sun, S., Tausnev, N., Thresher, D. and Yao, M.-S., 2006. Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data. Journal of Climate 19(2), pp. 153-192.
    • Smith, R. G. and Berry, P. A. M., 2011. Evaluation of the differences between the SRTM and satellite radar altimetry height measurements and the approach taken for the ACE2 GDEM in areas of large disagreement. Journal of Environmental Monitoring 13, pp. 1646-1652.
    • Smith, W. H. F. and Sandwell, D. T., 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, pp. 1957-1962.
    • Tachikawa, T., Hato, M., Kaku, M. and Iwasaki, A., 2011. Characteristics of ASTER GDEM version 2. In: Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, pp. 3657-3660.
    • Takaku, J., Tadono, T. and Tsutsui, K., 2014. Generation of High Resolution Global DSM from ALOS PRISM. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-4, pp. 243-248.
    • The SciPy community, 2013. SciPy Reference Guide - Release 0.13.0.
    • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L. and Williams, S. E., 2004. Extinction risk from climate change. Nature 427(6970), pp. 145-148.
    • Thompson, S. L. and Pollard, D., 1995. A Global Climate Model (GENESIS) with a Land-Surface Transfer Scheme (LSX). Part I: Present Climate Simulation. Journal of Climate 8(4), pp. 732-761.
    • Wood, J., 1996. Scale-based characterization of Digital Elevation Models. In: D. Parker (ed.), Innovations in GIS 3, London: Taylor and Francis, chapter 13.
    • Zambelli, P., Gebbert, S. and Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS International Journal of Geo-Information 2(1), pp. 201-219.
    • Zhang, W. and Montgomery, D., 1994. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resources Research 30(4), pp. 1019-1028.
    • This study was supported by CNPq (306294/2012-5, 307647/2015- 3) and FAPESP (2009/17675-5 , 2016/03188-9) research grants to CHG and is co-funded by two collaborative Dimensions of Biodiversity-BIOTA grants supported by FAPESP (2012/50260- 6, 2013/50297-0), NSF (DEB 1241066, DEB 1343578)), and NASA. I want to thank Dean Gesch for the fruitful discussions on the subject and the anonymous reviewers for their criticism and suggestions, which helped to improve this paper.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • NSF | Dimensions US-BIOTA-Sao Pau...
  • NSF | Dimensions US-BIOTA-Sao Pau...

Cite this article