Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hanel, Martin; Máca, Petr; Bašta, Petr; Vlnas, Radek; Pech, Pavel (2016)
Publisher: Copernicus Publications
Languages: English
Types: 0038
Subjects: T, G, GE1-350, Geography. Anthropology. Recreation, Environmental technology. Sanitary engineering, Environmental sciences, Technology, TD1-1066
In the present paper, the rainfall erosivity factor (R factor) for the area of the Czech Republic is assessed. Based on 10 min data for 96 stations and corresponding R factor estimates, a number of spatial interpolation methods are applied and cross-validated. These methods include inverse distance weighting, standard, ordinary, and regression kriging with parameters estimated by the method of moments and restricted maximum likelihood, and a generalized least-squares (GLS) model. For the regression-based methods, various statistics of monthly precipitation as well as geographical indices are considered as covariates. In addition to the uncertainty originating from spatial interpolation, the uncertainty due to estimation of the rainfall kinetic energy (needed for calculation of the R factor) as well as the effect of record length and spatial coverage are also addressed. Finally, the contribution of each source of uncertainty is quantified. The average R factor for the area of the Czech Republic is 640 MJ ha−1 mm h−1, with values for the individual stations ranging between 320 and 1520 MJ ha−1 mm h−1. Among various spatial interpolation methods, the GLS model relating the R factor to the altitude, longitude, mean precipitation, and mean fraction of precipitation above the 95th percentile of monthly precipitation performed best. Application of the GLS model also reduced the uncertainty due to the record length, which is substantial when the R factor is estimated for individual sites. Our results revealed that reasonable estimates of the R factor can be obtained even from relatively short records (15–20 years), provided sufficient spatial coverage and covariates are available.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Angulo-Martínez, M., López-Vicente, M., Vicente-Serrano, S. M., and Beguería, S.: Mapping rainfall erosivity at a regional scale: a comparison of interpolation methods in the Ebro Basin (NE Spain), Hydrol. Earth Syst. Sci., 13, 1907-1920, doi:10.5194/hess-13-1907-2009, 2009.
    • Bonilla, C. A. and Vidal, K. L.: Rainfall erosivity in central Chile, J. Hydrol., 410, 126-133, 2011.
    • Borrelli, P., Diodato, N., and Panagos, P.: Rainfall erosivity in Italy: a national scale spatio-temporal assessment, Int. J. Digit. Earth, 9, 835-850, 2016.
    • Brádka, J.: Srážky na území CˇSSR prˇi jednotlivých typech poveˇtrnostní situace, Hydrometeorological Institute, Prague, 1972.
    • Brázdil, R.: Vliv atlantského oceánu a strˇedozemního morˇe na srážkové pomeˇry léta na území Cˇ SSR, J. E. Purkyne University, Brno, 1980.
    • Brown, L. and Foster, G.: Storm erosivity using idealized intensity distributions, T. ASAE, 30, 0379-0386, 1987.
    • Capra, A., Porto, P., and La Spada, C.: Long-term variation of rainfall erosivity in Calabria (Southern Italy), Theor. Appl. Climatol., doi:10.1007/s00704-015-1697-2, in press, 2015.
    • Carter, C., Greer, J., Braud, H., and Floyd, J.: Raindrop characteristics in South Central United States, T. ASAE, 17, 1033-1037, 1974.
    • Catari, G., Latron, J., and Gallart, F.: Assessing the sources of uncertainty associated with the calculation of rainfall kinetic energy and erosivity - application to the Upper Llobregat Basin, NE Spain, Hydrol. Earth Syst. Sci., 15, 679-688, doi:10.5194/hess-15-679-2011, 2011.
    • Coutinho, M. A. and Tomás, P. P.: Characterization of raindrop size distributions at the Vale Formoso Experimental Erosion Center, Catena, 25, 187-197, 1995.
    • Goovaerts, P.: Geostatistics for natural resources evaluation, in: Applied geostatistics series, Oxford University Press, Incorporated, Oxford, 1997.
    • Goovaerts, P.: Using elevation to aid the geostatistical mapping of rainfall erosivity, Catena, 34, 227-242, 1999.
    • Hanel, M. and Buishand, T. A.: Assessment of the sources of variation in changes of precipitation characteristics over the Rhine basin using a linear mixed-effects model, J. Climate, 28, 6903- 6919, 2015.
    • Hanel, M. and Máca, P.: Spatial variability and interdependence of rain event characteristics in the Czech Republic, Hydrol. Process., 28, 2929-2944, 2014.
    • Hanel, M., Pavlásková, A., and Kyselý, J.: Trends in characteristics of sub-daily heavy precipitation and rainfall erosivity in the Czech Republic, Int. J. Climatol., 30, 1833-1845, 2016.
    • Haskard, A.: Anisotropic Matérn spatial covariance model: REML estimation and properties, University of Adelaide, Adelaide, 2007.
    • Hengl, T., Heuvelink, G., and Stein, A.: A generic framework for spatial prediction of soil variables based on regression-kriging, Geoderma, 120, 75-93, 2004.
    • Hengl, T., Heuvelink, G., and Rossiter, D.: About regressionkriging: From equations to case studies, Comput. Geosci., 33, 1301-1315, 2007.
    • Janecˇek, M., Kubátová, E., and Tippl, M.: Revised determination of the rainfall-runoff erosivity factor R for application of USLE in the Czech Republic, Soil Water Res., 1, 65-71, 2006.
    • Janecˇek, M., Becˇvárˇ, M., Bohuslávek, J., Dufková, J., Dumbrovský, M., Dostál, T., Hula, J., Kadlec, V., Krása, J., Kubátová, E., Novorný, I., Podhrázská, J., Tippl, M., Toman, F., Vopravil, J., and Vrána, K.: Guidelines on protection of agricultural land against soil erosion, Research Institute of Agricultural Engineering, Prague, 2007.
    • Janecˇek, M., Dostál, T., Kozlovsky Dufková, J., Dumbrovský, M., Hula, J., Kadlec, V., Kovárˇ, P., Krása, J., Kubátová, E., Kobzová, D., Kudrnácˇová, M., Novotný, I., Podhrázská, J., Pražan, J., Procházková, E., Strˇedová, H., Toman, F., Vopravil, J., and Vlasák, J.: Guidelines on protection of agricultural land against soil erosion, Czech University of Life Sciences, Prague, 2012a.
    • Janecˇek, M., Kveˇtonˇ, V., Kubátová, E., and Kobzová, D.: Differentiation and regionalization of rainfall erosivity factor values in the Czech Republic, Soil Water Res., 7, 1-9, 2012b.
    • Janecˇek, M., Kveˇtonˇ, V., Kubátová, E., Kobzová, D., Vošmerová, M., and Chlupsová, J.: Values of rainfall erosivity factor for the Czech Republic, J. Hydrol. Hydromech., 61, 97-102, 2013.
    • Kinnell, P.: Rainfall intensity-kinetic energy relationships for soil loss prediction, Soil Sci. Soc. Am. J., 45, 153-155, 1981.
    • Kitanidis, P.: Generalized covariance functions in estimation, Math. Geol., 25, 525-540, 1993.
    • Krása, J., Strˇedová, H., Dostál, T., and Novotný, I.: Rainfall erosivity research on the territory of the Czech Republic, in: Mendel a bioklimatologie, http://www.cbks.cz/SbornikBrno14/Krasa.pdf (last access: 20 October 2016), 2014.
    • Krása, J., Strˇedová, H., Šteˇpánek, P., Hanel, M., Dostál, T., and Novotný, I.: Recent and future rainfall erosivity on the territory of the Czech Republic, EGU General Assembly Conference Abstracts, vol. 17, p. 7714, 2015.
    • Kveˇtonˇ, V., Zahradnícˇek, J., and Žák, M.: Quality control and digitising of pluviographic measurements in the Czech Hydrometeorological Institute, Meteorologické zprávy, 57, 47-52, 2004.
    • Laws, J. O. and Parsons, D. A.: The relation of raindrop-size to intensity, Eos T. Am. Geophys. U., 24, 452-460, 1943.
    • Lee, M.-H. and Lin, H.-H.: Evaluation of Annual Rainfall Erosivity Index Based on Daily, Monthly, and Annual Precipitation Data of Rainfall Station Network in Southern Taiwan, Int. J. Distrib. Sensor Netw., 11, 1-15, doi:10.1155/2015/214708, 2014.
    • Lu, H. and Yu, B.: Spatial and seasonal distribution of rainfall erosivity in Australia, Soil Res., 40, 887-901, 2002.
    • McGregor, K., Bingner, R., Bowie, A., and Foster, G.: Erosivity index values for northern Mississippi, T. ASAE, 38, 1039-1047, 1995.
    • McIsaac, G.: Apparent geographic and atmospheric influences on raindrop sizes and rainfall kinetic energy, J. Soil Water Conserv., 45, 663-666, 1990.
    • Meddi, M., Toumi, S., and Assani, A. A.: Spatial and temporal variability of the rainfall erosivity factor in Northern Algeria, Arabian J. Geosci., 9, 1-13, 2016.
    • Meusburger, K., Steel, A., Panagos, P., Montanarella, L., and Alewell, C.: Spatial and temporal variability of rainfall erosivity factor for Switzerland, Hydrol. Earth Syst. Sci., 16, 167-177, doi:10.5194/hess-16-167-2012, 2012.
    • Minasny, B. and McBratney, A. B.: The Matérn function as a general model for soil variograms, Geoderma, 128, 192-207, 2005.
    • Minasny, B. and McBratney, A. B.: Spatial prediction of soil properties using EBLUP with the Matern covariance function, Geoderma, 140, 324-336, 2007.
    • Oliveira, P. T. S., Wendland, E., and Nearing, M. A.: Rainfall erosivity in Brazil: A review, Catena, 100, 139-147, 2013.
    • Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., Tadic´, M. P., Michaelides, S., Hrabalíková, M., Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Beguería, S., and Alewell, C.: Rainfall erosivity in Europe, Sci. Total Environ., 511, 801-814, 2015.
    • Panagos, P., Ballabio, C., Borrelli, P., and Meusburger, K.: Spatiotemporal analysis of rainfall erosivity and erosivity density in Greece, Catena, 137, 161-172, 2016a.
    • Panagos, P., Borrelli, P., Spinoni, J., Ballabio, C., Meusburger, K., Beguería, S., Klik, A., Michaelides, S., Petan, S., Hrabalíková, M., Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Tadic´, M. P., Diodato, N., Kostalova, J., Rousseva, S., Banasik, K., and Alewell, C.: Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments, Water, 8, 119, doi:10.3390/w8040119, 2016b.
    • Pardo-Iguzquiza, E. and Chica-Olmo, M.: Geostatistics with the Matern semivariogram model: A library of computer programs for inference, kriging and simulation, Comput. Geosci., 34, 1073-1079, 2008.
    • Pinheiro, J. C. and Bates, D. M.: Linear Mixed-Effects Models: Basic Concepts and Examples, Springer, New York, NY, USA, 2000.
    • Porto, P.: Exploring the effect of different time resolutions to calculate the rainfall erosivity factor R in Calabria, southern Italy, Hydrol. Process., 30, 1551-1562, 2016.
    • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D., and Yoder, D.: Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE), Agriculture Handbook 703, US Government Printing Office, Washington, D.C., USA, 1997.
    • Rosewell, C. J.: Rainfall kinetic energy in eastern Australia, J. Clim. Appl. Meteorol., 25, 1695-1701, 1986.
    • Štekl, J., Brázdil, R., Kakos, V., Jež, J., Tolasz, R., and Sokol, Z.: Extreme daily precipitation on the territory of the Czech Republic in the period 1879-2000 and their synoptic causes, National Climatic Programme of the Czech Republic, 31, 140, 2001.
    • Svoboda, V., Hanel, M., Máca, P., and Kyselý, J.: Characteristics of rainfall events in RCM simulations for the Czech Republic, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-283, 2016a.
    • Svoboda, V., Hanel, M., Máca, P., and Kyselý, J.: Projected changes of rainfall event characteristics for the Czech Republic, J. Hydrol. Hydromech., 64, 415-425, doi:10.1515/johh-2016-0036, 2016b.
    • Tolasz, R., Brázdil, R., Bulírˇ, O., Dobrovolný, P., Dubrovský, M., Hájková, L., Halásová, O., Hostýnek, J., Janouch, M., Kohut, M., Kve¸ton¸, V., Lepka, Z., Lipina, P., Macková, J., Metelka, L., Míková, T., Mrkvica, Z., Mocˇný, M., Nekovárˇ, J., Neˇmec, L., Pokorný, J., Reitschläger, D., Richterová, D., Rožnovský, J., Rˇepka, M., Semerádová, D., Sosna, V., Strˇíž, M., Šercl, P., Škáchová, H., Šteˇpánek, P., Šteˇpánková, P., Trnka, M., Valeriánová, A., Valter, J., Vanícˇek, K., Vavruška, F., Voženílek, V., Vráblík, T., Vysoudil, M., Zahradnícˇek, J., Zusková, I., Žák, M., and Žalud, Z.: Altas podnebí Cˇ eska (Climate atlas of the Czech Republic), Cˇeský hydrometeorologický ústav, Universita Palackého, Palackého, 2007.
    • Van der Knijff, J., Jones, R., and Montanarella, L.: Soil erosion risk assessment in Europe, European Soil Bureau, Join Research Centre, Ispra, Italy, 2000.
    • van Dijk, A., Bruijnzeel, L., and Rosewell, C.: Rainfall intensitykinetic energy relationships: a critical literature appraisal, J. Hydrol., 261, 1-23, 2002.
    • Verstraeten, G., Poesen, J., Demarée, G., and Salles, C.: Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates, J. Geophys. Res.-Atmos., 111, 1-11, 2006.
    • Willmott, C. and Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res., 30, 79-82, 2005.
    • Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses - A guide to conservation planning, Agriculture Handbook 537, US Department of Agriculture, Maryland, USA, 1978.
    • Yin, S., Xie, Y., Nearing, M., and Wang, C.: Estimation of rainfall erosivity using 5- to 60-minute fixed-interval rainfall data from China, Catena, 70, 306-312, 2007.
    • Yip, S., Ferro, C. A., Stephenson, D. B., and Hawkins, E.: A simple, coherent framework for partitioning uncertainty in climate predictions, J. Climate, 24, 4634-4643, 2011.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok