Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yue , C; Ciais , Philippe; Cadule , P.; Thonicke , K.; van Leeuwen , T.T. (2015)
Publisher: European Geosciences Union
Journal: Geoscientific Model Development
Languages: English
Types: Article
Subjects: [ SDE ] Environmental Sciences, Q, Science, QE1-996.5, Geography (General), Geology, G1-922
ddc: ddc:550
Carbon dioxide emissions from wild and anthropogenic fires return the carbon absorbed by plants to the atmosphere, and decrease the sequestration of carbon by land ecosystems. Future climate warming will likely increase the frequency of fire-triggering drought; so that the future terrestrial carbon uptake will depend on how fires respond to altered climate variation. In this study, we modelled the role of fires in the global terrestrial carbon balance for 1901–2012, using the global vegetation model ORCHIDEE equipped with the SPITFIRE model. We conducted two simulations with and without the fire module being activated, with a static land cover. The simulated global fire carbon emissions for 1997–2009 are 2.1 Pg C yr−1, which is close to the 2.0 Pg C yr−1 as given by the GFED3.1 data. The simulated land carbon uptake after accounting for emissions for 2003–2012 is 3.1Pg C yr−1, within the uncertainty of the residual carbon sink estimation (2.8 ± 0.8 Pg C yr−1). Fires are found to reduce the terrestrial carbon uptake by 0.32 Pg C yr−1 over 1901–2012, that is 20% of the total carbon sink in a world without fire. The fire-induced land sink reduction (SRfire) is significantly correlated with climate variability, with larger sink reduction occurring in warm and dry years, in particular during El Niño events. Our results suggest a symmetrical "respiration equivalence" by fires. During the ten lowest SRfire years (SRfire = 0.17 Pg C yr−1), fires mainly compensate the heterotrophic respiration that would happen if no fires had occurred. By contrast, during the ten highest SRfire fire years (SRfire = 0.49 Pg C yr−1), fire emissions exceed their "respiration equivalence" and create a substantial reduction in terrestrial carbon uptake. Our finding has important implication for the future role of fires in the terrestrial carbon balance, because the capacity of terrestrial ecosystems to sequester carbon will be diminished by future climate change characterized by increased drought and more severe El Niño events.

Share - Bookmark

Funded by projects

  • EC | PAGE21

Cite this article