Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Z. Ci; F. Peng; X. Xue; X. Zhang (2016)
Publisher: Copernicus Publications
Journal: Atmospheric Chemistry and Physics
Languages: English
Types: Article
Subjects: Chemistry, QD1-999, Physics, QC1-999
The pattern of air–surface gaseous mercury (mainly Hg(0)) exchange in the Qinghai–Tibet Plateau (QTP) may be unique because this region is characterized by low temperature, great temperature variation, intensive solar radiation, and pronounced freeze–thaw process of permafrost soils. However, the air–surface Hg(0) flux in the QTP is poorly investigated. In this study, we performed field measurements and controlled field experiments with dynamic flux chambers technique to examine the flux, temporal variation and influencing factors of air–surface Hg(0) exchange at a high-altitude (4700 m a.s.l.) and remote site in the central QTP. The results of field measurements showed that surface soils were the net emission source of Hg(0) in the entire study (2.86 ng m−2 h−1 or 25.05 µg m−2 yr−1). Hg(0) flux showed remarkable seasonality with net high emission in the warm campaigns (June 2014: 4.95 ng m−2 h−1; September 2014: 5.16 ng m−2 h−1; and May–June 2015: 1.95 ng m−2 h−1) and net low deposition in the winter campaign (December 2014: −0.62 ng m−2 h−1) and also showed a diurnal pattern with emission in the daytime and deposition in nighttime, especially on days without precipitation. Rainfall events on the dry soils induced a large and immediate increase in Hg(0) emission. Snowfall events did not induce the pulse of Hg(0) emission, but snowmelt resulted in the immediate increase in Hg(0) emission. Daily Hg(0) fluxes on rainy or snowy days were higher than those of days without precipitation. Controlled field experiments suggested that water addition to dry soils significantly increased Hg(0) emission both on short (minutes) and relatively long (hours) timescales, and they also showed that UV radiation was primarily attributed to Hg(0) emission in the daytime. Our findings imply that a warm climate and environmental change could facilitate Hg release from the permafrost terrestrial ecosystem in the QTP.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C., and Obrist, D.: New constraints on terrestrial surface-atmosphere fluxes of gaseous elemental mercury using a global database, Environ. Sci. Technol., 50, 507-524, 2016.
    • Amos, H. M., Jacob, D. J., Streets, D. G., and Sunderland, E. M.: Legacy impacts of all-time anthropogenic emissions on the global mercury cycle, Global Biogeochem. Cy., 27, 410-421, 2013.
    • Bahlmann, E., Ebinghaus, R., and Ruck, W.: Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils, J. Environ. Manage., 81, 114-125, 2006.
    • Bartels-Rausch, T., Huthwelker, T., Jöri, M., Gäggeler, H. W., and Ammann, M.: Interaction of gaseous elemental mercury with snow surfaces: laboratory investigation, Environ. Res. Lett., 3, 52-55, 2008.
    • Briggs, C. and Gustin, M. S.: Building upon the conceptual model for soil mercury flux: evidence of a link between moisture evaporation and Hg evasion, Water Air Soil Pollut., 224, 1-13, 2013.
    • Brooks, S., Arimoto, R., Lindberg, S., and Southworth, G.: Antarctic polar plateau snow surface conversion of deposited oxidized mercury to gaseous elemental mercury with fractional long-term burial, Atmos. Environ., 42, 2877-2884, 2008.
    • Carpi, A., and Lindberg, S. E.: Application of a Teflon™ dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil, Atmos. Environ., 32, 873-882, 1998.
    • Choi, H. D. and Holsen, T. M. Gaseous mercury emissions from unsterilized and sterilized soils: the effect of temperature and UV radiation, Environ. Pollut., 157, 1673-1678, 2009.
    • Ci, Z. J., Zhang, X. S., Wang, Z. W., and Niu, Z. C.: Phase speciation of mercury (Hg) in coastal water of the Yellow Sea, China, Mar. Chem., 126, 250-255, 2011.
    • Ci, Z. J., Zhang, X. S., and Wang, Z. W.: Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts, Environ. Sci. Technol., 46, 5636-5642, 2012.
    • Ci, Z. J., Zhang, X. S., Yin, Y. G., Chen, J. S., and Wang, S. W.: Mercury redox chemistry in waters of the eastern Asian seas: from polluted coast to clean open ocean, Environ. Sci. Technol., 50, 2371-2380, 2016a.
    • Ci, Z. J., Zhang, X. S., and Wang, Z. W.: Air-sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China, Environ. Sci. Pollut. Res., 23, 11323-11329, 2016b.
    • Cobbett, F. D., Steffen, A., Lawson, G., and Van Heyst, B. J.: GEM fluxes and atmospheric mercury concentrations (GEM, RGM and Hgp) in the Canadian Arctic at Alert, Nunavut, Canada (February-June 2005), Atmos. Environ., 41, 6527-6543, 2007.
    • Corbett-Hains, H., Walters, N. E., and Van Heyst, B. J.: Evaluating the effects of sub-zero temperature cycling on mercury flux from soils, Atmos. Environ., 63, 102-108, 2012.
    • Dommergue, A., Ferrari, C. P., Poissant, L., Gauchard, P. A., and Boutron, C. F.: Diurnal cycles of gaseous mercury within the snowpack at Kuujjuarapik/Whapmagoostui, Quebec, Canada, Environ. Sci. Technol., 37, 3289-3297, 2003.
    • Dommergue, A., Bahlmann, E., Ebinghaus, R., Ferrari, C., and Boutron, C.: Laboratory simulation of Hg0 emissions from a snowpack, Anal. Bioanal. Chem., 388, 319-327, 2007.
    • Dommergue, A., Barret, M., Courteaud, J., Cristofanelli, P., Ferrari, C. P., and Gallée, H.: Dynamic recycling of gaseous elemental mercury in the boundary layer of the Antarctic Plateau, Atmos. Chem. Phys., 12, 11027-11036, doi:10.5194/acp-12- 11027-2012, 2012.
    • Durnford, D. A. and Dastoor, A.: The behavior of mercury in the cryosphere: A review of what we know from observations, J. Geophys. Res., 116, D06305, doi:10.1029/2010JD014809 2011.
    • Durnford, D. A., Dastoor, A. P., Steen, A. O., Berg, T., Ryzhkov, A., Figueras-Nieto, D., Hole, L. R., Pfaffhuber, K. A., and Hung, H.: How relevant is the deposition of mercury onto snowpacks? - Part 1: A statistical study on the impact of environmental factors, Atmos. Chem. Phys., 12, 9221-9249, doi:10.5194/acp-12-9221- 2012, 2012a.
    • Durnford, D. A., Dastoor, A., Ryzhkov, A., Poissant, L., Pilote, M., and Figueras-Nieto, D.: How relevant is the deposition of mercury onto snowpacks? - Part 2: A modeling study, Atmos. Chem. Phys., 12, 9251-9274, doi:10.5194/acp-12-9251-2012, 2012b.
    • Ebinghaus, R., Jennings, S. G., Kock, H. H., Derwent, R. G., Manning, A. J., and Spain, T. G.: Decreasing trends in total gaseous mercury observations in baseline air at Mace Head, Ireland from 1996 to 2009, Atmos. Environ., 45, 3475-3480, 2011.
    • Eckley, C. S., Gustin, M., Lin, C-J., Li, X., and Miller, M. B.: The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes, Atmos. Environ., 44, 194-203, 2010.
    • Eckley, C. S., Gustin, M., Marsik, F., and Miller, M. B.: Measurement of surface mercury fluxes at active industrial gold mines in Nevada (USA), Sci. Total Environ., 409, 514-522, 2011.
    • Edwards, G. C., and Howard, D. A. Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia, Atmos. Chem. Phys., 13, 5325-5336, doi:10.5194/acp-13-5325-2013, 2013.
    • Engle, M. A., Gustin, M. S., Lindberg, S. E., and Gerler, A. W.: Investigation of the effect of tropospheric oxidants on Hg emissions from substrates, Mater. Geoenviron., 51, 1546-1549, 2004.
    • Ericksen, J. A., Gustin, M. S., Lindberg, S. E., Olund, S. D., and Krabbenhoft, D. P.: Assessing the potential for re-emission of mercury deposited in precipitation from arid soils using a stable isotope, Environ. Sci. Technol., 39, 8001-8007, 2005.
    • Ericksen, J. A., Gustin, M. S., Xin, M., Weisberg, P. J., and Fernandez, G. C. J.: Air-soil exchange of mercury from background soils in the United States, Sci. Total Environ., 366, 851-863, 2006.
    • Faïn, X., Grangeon, S., Bahlmann, E., Fritsche, J., Obrist, D., Dommergue, A., Ferrari, C. P., Cairns, W., Ebinghaus, R., and Barbante, C.: Diurnal production of gaseous mercury in the alpine snowpack before snowmelt, J. Geophys. Res. Atmos., 112, 5671-5674, 2007.
    • Ferrari, C. P., Gauchard, P., Aspmo, K., Dommergue, A., Magand, O., Bahlmann, E., Nagorski, S., Temme, C., Ebinghaus, R., Steffen, A., Banic, C., Berg, T., Planchon, F., Barbante, C., Cescon, P., and Boutron, C. F.: Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard, Atmos. Environ., 39, 7633-7645, 2005.
    • Fitzgerald, W. F. and Gill, G. A.: Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis, Anal. Chem., 51, 1714- 1720, 1979.
    • Fu, X. W., Feng, X. B., and Wang, S. F.: Exchange fluxes of Hg between surfaces and atmosphere in the eastern flank of Mount Gongga, Sichuan province, southwestern China, J. Geophys. Res. Atmos., 113, D20, doi:10.1029/2008JD009814, 2008a.
    • Fu, X. W., Feng, X. B., Zhu, W. Z., Wang, S. F., and Lu, J.: Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the Tibetan plateau, China, Atmos. Environ., 42, 970-979, 2008b.
    • Fu, X. W., Feng, X., Liang, P., Deliger, Zhang, H., Ji, J., and Liu, P.: Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, northwestern China, Atmos. Chem. Phys., 12, 1951-1964, doi:10.5194/acp-12-1951-2012, 2012.
    • Gabriel, M. C. and Williamson, D. G.: Some insight into the influence of urban ground surface properties on the air-surface exchange of total gaseous mercury, Appl. Geochem., 23, 794-806, 2008.
    • Gabriel, M. C., Williamson, D. G., Zhang, H., Brooks, S., and Lindberg, S.: Diurnal and seasonal trends in total gaseous mercury flux from three urban ground surfaces, Atmos. Environ., 40, 4269-4284, 2006.
    • Gabriel, M. C., Williamson, D. G., and Brooks, S.: Potential impact of rainfall on the air-surface exchange of total gaseous mercury from two common urban ground surfaces, Atmos. Environ., 45, 1766-1774, 2011.
    • Gustin, M. S. and Stamenkovic, J.: Effect of watering and soil moisture on mercury emissions from soils, Biogeochemistry, 76, 215- 232, 2005.
    • Gustin, M. S., Taylor Jr, G. E., and Maxey, R. A.: Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere, J. Geophys. Res. Atmos., 102, 3891- 3898, 1997.
    • Gustin, M. S., Lindberg, S., Marsik, F., Casimir, A., Ebinghaus, R., Edwards, G., Hubble-Fitzgerald, C., Kemp, R., Kock, H., Leonard, T., London J., Majewski, M., Montecinos, C., Owens, J., Pilote, M., Poissant, L., Rasmussen, P., Schaedlich, F., Schneeberger, D., Schroeder, W., Sommar, J., Turner, R., Vette, A., Wallschlaeger, D., Xiao, Z., and Zhang, H.: Nevada STORMS project: Measurement of mercury emissions from naturally enriched surfaces, J. Geophys. Res. Atmos., 104, D17, 21831-21844, 1999.
    • Gustin, M. S., Biester, H., and Kim, C. S.: Investigation of the light-enhanced emission of mercury from naturally enriched substrates, Atmos. Environ., 36, 3241-3254, 2002.
    • Gustin, M. S., Ericksen, J. A., Schorran, D. E., Johnson, D. W., Lindberg, S. E., and Coleman, J. S.: Application of controlled mesocosms for understanding mercury air-soil-plant exchange, Environ. Sci. Technol., 38, 6044-6050, 2004.
    • Gustin, M. S., Engle, M., Ericksen, J., Lyman, S., Stamenkovic, J., and Xin, M.: Mercury exchange between the atmosphere and low mercury containing substrates, Appl. Geochem., 21, 1913-1923, 2006.
    • Hintelmann, H., Harris, R., Heyes, A., Hurley, J. P., Kelly, C. A., Krabbenhoft, D. P., Lindberg, S., Rudd, J. W. M., Scott, K. J., and Louis, V. L. S.: Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study, Environ. Sci. Technol., 36, 5034-5040, 2002.
    • Huang, J., Kang, S. C., Zhang, Q. G., Jenkins, M. G., Guo, J. M., Zhang, G. S., and Wang, K.: Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau, Atmos. Environ., 46, 140-146, 2012.
    • Huang, J., Kang, S. C., Wang, S. X., Wang, L., Zhang, Q. G., Guo, J. M., Wang, K., Zhang, G. S., and Tripathee, L.: Wet deposition of mercury at Lhasa, the capital city of Tibet, Sci. Total Environ., 447, 123-132, 2013.
    • Jiskra, M., Wiederhold, J. G., Skyllberg, U., Kronberg, R. M., Hajdas, I., and Kretzschmar, R.: Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures, Environ. Sci. Technol., 49, 7188-7196, 2015.
    • Johnson, D. W., Benesch, J. A., Gustin, M. S., Schorran, D. S., Lindberg, S. E., and Coleman, J. S.: Experimental evidence against diffusion control of Hg evasion from soils, Sci. Total Environ., 304, 175-184, 2003.
    • Kang, S. C., Xu, Y. W., You, Q. L., Flügel, W., Pepin, N., and Yao, T. D.: Review of climate and cryospheric change in the Tibetan Plateau, Environ. Res. Lett., 5, 015101, doi:10.1088/1748- 9326/5/1/015101, 2010.
    • Khwaja, A. R., Bloom, P. R., and Brezonik, P. L.: Binding constants of divalent mercury (Hg2C/ in soil humic acids and soil organic matter, Environ. Sci. Technol., 40, 844-849, 2006.
    • Kim, K. H. and Lindberg, S. E.: Design and initial tests of a dynamic enclosure chamber for measurements of vapor-phase mercury fluxes over soils, Water Air Soil Pollut., 80, 1059-1068, 1995.
    • Klusman, R. W. and Webster, J. D.: Meteorological noise in crustal gas emission and relevance to geochemical exploration, J. Geochem. Explor., 15, 63-76, 1981.
    • Kocman, D. and Horvat, M.: A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment, Atmos. Chem. Phys., 10, 1417-1426, doi:10.5194/acp-10-1417-2010, 2010.
    • Krabbenhoft, D. P. and Sunderland, E. M.: Global change and mercury, Science, 341, 1457-1458, 2013.
    • Lalonde, J. D., Poulain, A. J., and Marc, A.: The role of mercury redox reactions in snow on snow-to-air mercury transfer, Environ. Sci. Technol., 36, 174-178, 2001.
    • Lalonde, J. D., Amyot, M., Doyon, M., and Auclair, J.: Photoinduced Hg(II) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada), J. Geophys. Res. Atmos., 108, 471-475, 2003.
    • Lin, C. J., Gustin, M. S., Singhasuk, P., Eckley, C., and Miller, M.: Empirical models for estimating mercury flux from soils, Environ. Sci. Technol., 44, 8522-8528, 2010.
    • Lindberg, S. E., Zhang, H., Gustin, M., Vette, A., Marsik, F., Owens, J., Casimir, A., Ebinghaus, R., Edwards, G., Fitzgerald, C., Kemp, J., Kock, H. H., London, J., Majewski, M., Poissant, L., Pilote, M., Rasmussen, P., Schaedlich, F., Schneeberger, D., Sommar, J., Turner, R., Wallschläger, D., and Xiao, Z.: Increases in mercury emissions from desert soils in response to rainfall and irrigation, J. Geophys. Res. Atmos., 104, 21879-21888, 1999.
    • Loewen, M., Kang, S. C., Armstrong, D., Zhang, Q. G., Tomy, G., and Wang, F. Y.: Atmospheric transport of mercury to the Tibetan Plateau, Environ. Sci. Technol., 41, 7632-7638, 2007.
    • Malcolm, E. G. and Keeler, G. J.: Measurements of mercury in dew: atmospheric removal of mercury species to a wetted surface, Environ. Sci. Technol., 36, 2815-2821, 2002.
    • Mann, E., Ziegler, S., Mallory, M., and O'Driscoll, N.: Mercury photochemistry in snow and implications for Arctic ecosystems, Environ. Rev., 22, 331-345, 2014.
    • Mann, E. A., Mallory, M. L., Ziegler, S. E., Tordon, R., and O'Driscoll, N. J.: Mercury in Arctic snow: quantifying the kinetics of photochemical oxidation and reduction, Sci. Total Environ., 509/510, 115-132, 2015.
    • Mauclair, C., Layshock, J., and Carpi, A.: Quantifying the effect of humic matter on the emission of mercury from artificial soil surfaces, Appl. Geochem., 23, 594-601, 2008.
    • Mazur, M. E. E., Eckley, C. S., and Mitchell, C. P. J.: Susceptibility of soil bound mercury to gaseous emission as a function of source depth: an enriched isotope tracer investigation, Environ. Sci. Technol., 49, 9143-9149, 2015.
    • Moore, C. and Carpi, A.: Mechanisms of the emission of mercury from soil: Role of UV radiation, J. Geophys. Res., 110, D24302, doi:10.1029/2004JD005567, 2005.
    • NSIDC: National Snow and Ice Data Center, USA, www.nsidc.org, 2016.
    • Park, S. Y., Holsen, T. M., Kim, P. R., and Han, Y. J.: Laboratory investigation of factors affecting mercury emissions from soils, Environ. Earth Sci., 72, 2711-2721, 2014.
    • Peng, F., Xue, X., You, Q., Zhou, X., and Wang, T.: Warming effects on carbon release in a permafrost area of Qinghai-Tibet Plateau, Environ. Earth Sci., 73, 57-66, 2015a.
    • Peng, F., Xu, M., You, Q., Zhou, X., Wang, T., and Xue, X.: Different responses of soil respiration and its components to experimental warming with contrasting soil water content, Arct. Antarct. Alp. Res., 47, 359-368, 2015b.
    • Pirrone, N. and Mason, R. P. (Eds.): Hg fate and transport in the global atmosphere: emissions, measurements and models, Springer, Geneva, 2009.
    • Poissant, L., Pilote, M., and Casimir, A.: Mercury flux measurements in a naturally enriched area: Correlation with environmental conditions during the Nevada Study and Tests of the Release of Mercury From Soils (STORMS), J. Geophys. Res., 104, 21845-21857, 1999.
    • Schlüter, K.: Review: evaporation of mercury from soils. An integration and synthesis of current knowledge, Environ. Geol., 39, 249-271, 2000.
    • Schuster, E.: The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-a review of the literature, Water Air Soil Pollut., 56, 667-680, 1991.
    • Selin, N. E.: Global biogeochemical cycling of mercury: A review, Annu. Rev. Env. Resour., 34, 43-63, 2009.
    • Sommar, J., Zhu, W., Lin, C. J., and Feng, X.: Field approaches to measure mercury exchange between natural surfaces and the atmosphere - a review, Crit. Rev. Environ. Sci. Technol., 43, 1657- 1739, 2013.
    • Song, X. and Van Heyst, B.: Volatilization of mercury from soils in response to simulated precipitation, Atmos. Environ., 39, 7494- 7505, 2005.
    • Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., and Dommergue, A.: A review of worldwide atmospheric mercury measurements, Atmos. Chem. Phys., 10, 8245-8265, doi:10.5194/acp10-8245-2010, 2010.
    • Steen, A. O., Berg, T., Dastoor, A. P., Durnford, D. A., Hole, L. R., and Pfaffhuber, K. A.: Dynamic exchange of gaseous elemental mercury during polar night and day, Atmos. Environ., 43, 5604- 561, 2009.
    • Streets, D. G., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H., and Feng, X.: Anthropogenic mercury emissions in China, Atmos. Environ., 39, 7789-7806, 2005.
    • Toyota, K., McConnell, J. C., Staebler, R. M., and Dastoor, A. P.: Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone, Atmos. Chem. Phys., 14, 4101-4133, doi:10.5194/acp-14-4101- 2014, 2014a.
    • Toyota, K., Dastoor, A. P., and Ryzhkov, A.: Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 2: Mercury and its speciation, Atmos. Chem. Phys., 14, 4135-4167, doi:10.5194/acp-14-4135-2014, 2014b.
    • Wang, D. Y., He, L., Shi, X. J., Wei, S. Q., and Feng, X. B.: Release flux of mercury from different environmental surfaces in Chongqing, China, Chemosphere, 64, 1845-1854, 2006.
    • Wang, S. F., Feng, X. B., Qiu, G. L., Shang, L. H., Li, P., and Wei, Z. Q.: Mercury concentrations and air/soil fluxes in Wuchuan mercury mining district, Guizhou province, China, Atmos. Environ., 41, 5984-5993, 2007.
    • Wang, X. P., Yao, T. D., Wang, P. L., and Tian, L. D.: The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier, Mt. Xixiabangma, central Himalayas, Sci. Total Environ., 394, 134-143, 2008.
    • Wei, K., Chen, W., and Huang, R. H.: Long-term changes of the ultraviolet radiation in China and its relationship with total ozone and precipitation, Adv. Atmos. Sci., 23, 700-710, 2006.
    • Xin, M. and Gustin, M. S.: Gaseous elemental mercury exchange with low mercury containing soils: Investigation of controlling factors, Appl. Geochem., 22, 1451-1466, 2007.
    • Xin, M., Gustin, M., and Johnson, D.: Laboratory investigation of the potential for re-emission of atmospherically derived Hg from soils, Environ. Sci. Technol., 41, 4946-4951, 2007.
    • Yang, Y. K., Zhang, C., Shi, X. J., Lin, T., and Wang, D. Y.: Effect of organic matter and pH on mercury release from soils, J. Environ. Sci., 19, 1349-1354, 2007.
    • Yin, X. F., Zhang Q. G., Tong Y. D., Zhang W., Wang X. J., Schauer J., and Kang S. C.: Observations of atmospheric mercury at a high altitude site in the Tibetan plateau in the winter of 2014/2015: concentrations, speciation and insight into atmospheric hg in free troposphere, 12th International Conference on Mercury as a Global Pollutant, 14-19 June, Jeju, Korea, 2015.
    • Zhang, H. and Lindberg, S. E.: Processes influencing the emission of mercury from soils: A conceptual model, J. Geophys. Res. Atmos., 104, 21889-21896, 1999.
    • Zhang, Q. G., Huang, J., Wang, F. Y., Mark, L., Xu, J. Z., Armstrong, D., Li, C. L., Zhang, Y. L., and Kang, S. C.: Mercury distribution and deposition in glacier snow over western China, Environ. Sci. Technol., 46, 5404-5413, 2012.
    • Zhou, L., Zou, H., Shupo, M. A., and Peng, L. I.: The Tibetan ozone low and its long-term variation during 1979-2010, Acta Meteorol. Sin., 27, 75-86, 2013.
    • Zhu, J. S., Wang, D. Y., Liu, X., and Zhang, Y. T.: Mercury fluxes from air/surface interfaces in paddy field and dry land, Appl. Geochem., 26, 249-255, 2011.
    • Zhu, W., Lin, C.-J., Wang, X., Sommar, J., Fu, X., and Feng, X.: Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review, Atmos. Chem. Phys., 16, 4451-4480, doi:10.5194/acp-16-4451-2016, 2016.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article