LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Guo, Jianming; Wei, Xuebing; Long, Guohui; Wang, Bo; Xu, Shiyang (2016)
Languages: English
Types: Article
Subjects:
We reconstruct the main geological structures and surfaces in three dimensions through the interpolation of regularly spaced 2D seismic sections, constrained by wells data and surface geology of the Qaidam basin to reconstruct Cenozoic tectonic history of the Qaidam basin and decipher how the Tibetan plateau was formed. This study presents the subsurface data in conjunction with observations and analysis of the stratigraphic and sedimentary evolution. The Cenozoic deformation history of the Qaidam basin shows geologic synchroneity with uplifting history of the Tibet Plateau. It is therefore proposed that the deformation and uplifting in the south and north edges of the Tibet Plateau was almost synchronous. The total shortening and shortening rate during Cenozoic reached 25.5 km and 11.2 % respectively across the Qaidam basin, indicating that the loss of the left-lateral strike slip rates of the Altyn Tagh fault has been structurally transformed into local crustal thickening across NW-trending folds and thrust faults. Meanwhile there is an about 10° vertical component along the strike-slip Altyn Tagh fault, the block oblique slip shows one more growth mechanism of the northeast Tibet.

Share - Bookmark

Download from

Cite this article

Collected from