LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ercan, Ali; Kavvas, M. Levent (2016)
Languages: English
Types: Article
Subjects:
Although fractional integration and differentiation have found many applications in various fields of science, such as physics, finance, bioengineering, continuum mechanics and hydrology, their engineering applications, especially in the field of fluid flow processes, are rather limited. In this study, a finite difference numerical approach is proposed to solve the time-space fractional governing equations of one-dimensional unsteady/non-uniform open channel flow process. By numerical simulations, results of the proposed fractional governing equations of the open channel flow process were compared with those of the standard Saint Venant equations. Numerical simulations showed that flow discharge and water depth can exhibit heavier tails in downstream locations as space and time fractional derivative powers decrease from 1. The fractional governing equations under consideration are generalizations of the well-known Saint Venant equations, which are written in the integer differentiation framework. The new governing equations in the fractional order differentiation framework have the capability of modeling nonlocal flow processes both in time and in space by taking the global correlations into consideration. Furthermore, the generalized flow process may shed light into understanding the theory of the anomalous transport processes and observed heavy tailed distributions of particle displacements in transport processes.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from