LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
A. L. Latifah; A. L. Latifah; E. V. Groesen; E. V. Groesen (2016)
Publisher: Copernicus Publications
Journal: Nonlinear Processes in Geophysics
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809
This paper investigates in detail a possible mechanism of energy convergence leading to freak waves. We give examples of a freak wave as a (weak) pseudo-maximal wave to illustrate the importance of phase coherence. Given a time signal at a certain position, we identify parts of the time signal with successive high amplitudes, so-called group events, that may lead to a freak wave using wavelet transform analysis. The local coherence of the critical group event is measured by its time spreading of the most energetic waves. Four types of signals have been investigated: dispersive focusing, normal sea condition, thunderstorm condition and an experimental irregular wave. In all cases presented in this paper, it is shown that a high correlation exists between the local coherence and the appearance of a freak wave. This makes it plausible that freak waves can be developed by local interactions of waves in a wave group and that the effect of waves that are not in the immediate vicinity is minimal. This indicates that a local coherence mechanism within a wave group can be one mechanism that leads to the appearance of a freak wave.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adcock, T. A. A., Taylor, P. H., and Draper, S.: Nonlinear dynamics of wave-groups in random seas: unexpected walls of water in the open ocean, P. R. Soc. A, 471, 20150660, doi:10.1098/rspa.2015.0660, 2015.
    • Bai, J., Ma, N., and Gu, X.: Evolution and Energy Transition of Focused Waves on Current, in: 34th International Conference on Ocean, Offshore and Arctic Engineering, Volume 3: Structures, Safety and Reliability, Newfoundland, Canada, 31 May-5 June 2015, Paper No. OMAE2015-41481, 8 pp., doi:10.1115/OMAE2015-41481, 2015.
    • Baldock, T. E., Swan, C., and Taylor, P. H.: A laboratory study of surface waves on water, Philos. T. Roy. Soc. A, 354, 649-676, 1996.
    • Brown, M. G. and Jensen, A.: Experiments on focusing unidirectional water waves, J. Geophys. Res., 106, 16917-16928, 2001.
    • Cherneva, Z. and Guedes Soares, C.: Time-frequency analysis of the sea state with the Andrea freak wave, Nat. Hazards Earth Syst. Sci., 14, 3143-3150, doi:10.5194/nhess-14-3143- 2014, 2014.
    • Clauss, G. F.: Dramas of the sea: episodic waves and their impact on offshore structures, Appl. Ocean Res., 24, 147-161, 2002.
    • Cousins, W. and Sapsis, T. P.: Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model, Physica D, 280-281, 48-58, 2014.
    • Cousins, W. and Sapsis, T. P.: Reduced-order precursors of rare events in unidirectional nonlinear water waves, J. Fluid Mech., 790, 368-388, doi:10.1017/jfm.2016.13, 2016.
    • Dysthe, K., Krogstad, H. E., and Muller, P.: Oceanic rogue waves, Annual Review of Fluid Mechanics, 40, 287-310, doi:10.1146/annurev.fluid.40.111406.102203, 2008.
    • Garret, C. and Gemmrich, J.: Rogue waves, Phys. Today, 62, 62-63, doi:10.1063/1.3156339, 2009.
    • Gemmrich, J. and Garrett, C.: Unexpected Wave, J. Phys. Oceanogr., 38, 2330-2336, 2008.
    • Grimshaw, R., Pelinovsky, D., Pelinovsky, E., and Talipova, T.: Wave group dynamics in weakly nonlinear long-wave models, Physica D, 159, 35-57, 2001.
    • Grue, J., Clamond, D., Huseby, M., and Jensen, A.: Kinematics of extreme waves in deep water, Appl. Ocean Res., 25, 355-366, 2003.
    • Haver, S.: Freak Waves: A Suggested Definition and Possible Consequences for Marine Structures, in: Proceeding of Rogue Waves, Brest, France, 20-22 October 2004, 2004.
    • Holthuijsen, L. H.: Waves in Oceanic and Coastal Waters, Cambridge University Press, Cambridge, 2007.
    • Hu, Z., Tang, W., Xue, H., and Zhang, X.: Numerical study of Rogue waves as nonlinear Schrödinger breather solutions under finite water depth, Wave Motion, 52, 81-90, 2015.
    • Johannessen, T. and Swan, C.: Extreme multi-direction waves, Coastal Engineering 1998, 1110-1123, doi:10.1061/9780784404119.082, 1999.
    • Kharif, C. and Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon, Eur. J. Mech. B-Fluid., 22, 603-634, 2003.
    • Kharif, C. and Pelinovsky, E.: Waves in geophysical fluids: Tsunamis, Rogue waves, Internal waves and Internal tides, chap. Freak waves phenomenon: physical mechanisms and modelling, Springer Wien New York, 2006.
    • Kharif, C., Pelinovsky, E., Talipova, T., and Slunyaev, A.: Focusing of Nonlinear Wave Groups in Deep Water, JETP LettersC, 73, 170-175, 2001.
    • Kharif, C., Pelinovsky, E., and Slunyaev, A.: Rogue waves in the Ocean, in: Advances in Geophysical and Environmental Mechanics and Mathematics, Springer-Verlag, Berlin Heidelberg, doi:10.1007/978-3-540-88419-4, 2009.
    • Kwon, S., Lee, H., and Kim, C.: Wavelet transform based coherence analysis of freak wave and its impact, Ocean Eng., 32, 1572- 1589, 2015.
    • Lakhturov, I., Adytia, D., and van Groesen, E.: Optimized Variational 1D Boussinesq Modelling for broad-band waves over flat bottom, Wave Motion, 49, 309-322, 2012.
    • Latifah, A. L. and van Groesen, E.: Coherence and predictability of extreme events in irregular waves, Nonlin. Processes Geophys., 19, 199-213, doi:10.5194/npg-19-199-2012, 2012.
    • Lebedeva, E. A. and Postnikov, E. B.: On alternative wavelet reconstruction formula: a case study of approximate wavelets, Royal Society Open Science, 1, 140124, doi:10.1098/rsos.140124, 2014.
    • Liam, L. S., Adytia, D., and van Groesen, E.: Embedded wave generation for dispersive surface wave models, Ocean Eng., 80, 73- 83, 2014.
    • Lin, E.-B. and Liu, P. C.: A discrete wavelet analysis of freak waves in the ocean, J. Appl. Math., 5, 379-394, 2004.
    • Liu, P. and Mori, N.: Characterizing Freak Waves with Wavelet Transform Analysis, in: Rouge Waves 2000, edited by: Olagnon, M. and Athanassoulis, G. A., Editions Ifremer: Brest, France, 2000, 151-156, 2000.
    • Merkoune, D., Touboul, J., Abcha, N., Mouazé, D., and Ezersky, A.: Focusing wave group on a current of finite depth, Nat. Hazards Earth Syst. Sci., 13, 2941-2949, doi:10.5194/nhess-13- 2941-2013, 2013.
    • Mertins, A.: Signal Analysis: Wavelets, Filter Banks, TimeFrequency Transforms and Applications, John Wiley & Sons Ltd, Baffins Lane, Chichester, England, 1999.
    • Muller, P., Osborne, A., and Garret, C.: Rogue waves, in: The 14th 'Aha Huliko'a Winter Workshop EXTREME EVENTS, 25-28 January 2005, Honolulu, Hawaii, 9 pp., 2005.
    • Olagnon, M. and van Iseghem, S.: Some cases of observed rogue waves and attempts to characterize their occurrence condition, in: Rogue Waves 2000: Proceedings of a Workshop in Brest, France, 29-30 November 2000, edited by: Olagnon, M. and Athanassoulis, G. A., IFREMER, 2000.
    • Onorato, M., Residori, S., Bortolozzo, U., Montina, A., and Arecchi, F.: Rogue waves and their generating mechanisms in different physical contexts, Phys. Rep., 528, 47-89, 2013.
    • Pelinovsky, E. and Kharif, C.: Extreme Ocean Waves, Springer Netherlands, 2008.
    • Pelinovsky, E., Talipova, T., and Kharif, C.: Nonlinear-dispersive mechanism of the freak wave formation in shallow water, Physica D, 147, 83-94, 2000.
    • Pelinovsky, E., Shurgalina, E., and Chaikovskaya, N.: The scenario of a single freak wave appearance in deep water - dispersive focusing mechanism framework, Nat. Hazards Earth Syst. Sci., 11, 127-134, doi:10.5194/nhess-11-127-2011, 2011.
    • Porubov, A. V., Tsuji, H., Lavrenov, I. V., and Oikawa, M.: Focusing of Nonlinear Wave Groups in Deep Water, Formation of the rogue wave due to nonlinear two-dimensional waves interaction, 42, 202-210, 2005.
    • Prevosto, M.: Effect of Directional Spreading and Spectral Bandwidth on the Nonlinearity of the Irregular Waves, in: Proceedings of the Eighth International Offshore and Polar Engineering Conference, Montréal, Canada, 24-29 May 1998, IFREMER Brest, France, 119-123, 1998.
    • Ruban, V. P.: Rogue waves at low benjamin-feir indices: Numerical study of the role of nonlinearity, JETP Lett.C, 97, 686-689, 2013.
    • Sergeeva, A. and Slunyaev, A.: Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states, Nat. Hazards Earth Syst. Sci., 13, 1759-1771, doi:10.5194/nhess-13-1759-2013, 2013.
    • Sergeeva, A., Slunyaev, A., Pelinovsky, E., Talipova, T., and Doong, D.-J.: Numerical modeling of rogue waves in coastal waters, Nat. Hazards Earth Syst. Sci., 14, 861-870, doi:10.5194/nhess-14- 861-2014, 2014.
    • Shemer, L., Goulitski, K., Kit, E., Grune, J., and SchmidtKoppenhagen, R.: On generation of single steep waves in tanks, in: Ocean Waves Measurement and Analysis, Fifth International Symposium Waves 2005, 3-7 July 2005, Madrid, Spain, Paper number: 113, 10 pp., 2005.
    • Shemer, L., Goulitski, K., and Kit, E.: Evolution of wide-spectrum unidirectional wave groups in a tank: an experimental and numerical study, Eur. J. Mech. B-Fluid., 26, 193-219, 2007.
    • Slunyaev, A., Pelinovsky, E., and Soares, C. G.: Modeling freak waves from the North Sea, Appl. Ocean Res., 27, 12-22, 2005.
    • Slunyaev, A., Didenkulova, I., and Pelinovsky, E.: Rogue Waters, Contemp. Phys., 52, 571-590, 2011.
    • van Groesen, E. and Andonowati: Variational derivation of KdVtype of models for surface water waves, Phys. Let. A, 366, 195- 201, 2007.
    • van Groesen, E., Andonowati, Liam, L. S., and Lakhturov, I.: Accurate modelling of unidirectional surface waves, J. Comput. Appl. Math., 234, 1747-1756, 2010.
    • van 't Veer, R. and Vlasveld, E.: Green water phenomena on a TwinHull FLNG concept, in: Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA, 8-13 June 2014, Paper No. OMAE2014-23915, 9 pp., doi:10.1115/OMAE2014-23915, 2014.
    • Vialar, T.: Complex and Chaotic Nonlinear Dynamics, SpringerVerlag, Berlin Heidelberg, 2009.
    • Viotti, C., Dutykh, D., Dudley, J., and Dias, F.: Emergence of coherent wave groups in deep-water random sea, Phys. Rev. E, 87, 063001, doi:10.1103/PhysRevE.87.063001, 2013.
    • Wang, L., Li, J., and Li, S.: Numerical Simulation of Freak Wave Generation in Irregular Wave Train, Journal of Applied Mathematics and Physics, 3, 1044-1050, 2015.
    • Wu, L.-C., Lee, B.-C., Kao, C. C., Doong, D.-J., and Chang, C.- C.: Applying the wavelet transform to study the features of freak waves, Coast. Eng., 32, 8 pp., 2010.
    • Xia, W., Ma, Y., and Dong, G.: Numerical simulation of freak waves in radom sea state, Procedia Engineering, 116, 366-372, 2015.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article