Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Slevin, Darren; Tett, Simon F. B.; Exbrayat, Jean-François; Bloom, A. Anthony; Williams, Mathew (2016)
Languages: English
Types: Article
This study evaluates the ability of the JULES Land Surface Model (LSM) to simulate Gross Primary Productivity (GPP) at regional and global scales for 2001–2010. Model simulations, performed at various spatial resolutions and driven with a variety of meteorological datasets (WFDEI-GPCC, WFDEI-CRU and PRINCETON), were compared to the MODIS GPP product, spatially gridded estimates of upscaled GPP from the FLUXNET network (FLUXNET-MTE) and the CARDAMOM terrestrial carbon cycle analysis. Firstly, JULES was found to simulate interannual variability (IAV) at global scales. When JULES was driven with the WFDEI-GPCC dataset (at 0.5º × 0.5º spatial resolution), it was found that the annual average global GPP simulated by JULES for 2001–2010 was higher than the observation-based estimates (MODIS and FLUXNET-MTE), by 25 % and 8 %, respectively, and CARDAMOM estimates by 23 %. Secondly, GPP fluxes simulated by JULES for various biomes (forests, grasslands and shrubs) at global and regional scales were compared. It was found that differences between JULES, FLUXNET-MTE, MODIS and CARDAMOM at global scales were mostly due to differences in the tropics with CARDAMOM performing better than JULES in this region. Thirdly, it was shown that spatial resolution (0.5º × 0.5º, 1º × 1º and 2º × 2º) had no impact on simulated GPP on these large scales. Finally, the sensitivity of JULES to meteorological driving data, a major source of model uncertainty, was examined. Estimates of annual average global GPP were higher when JULES was driven with the PRINCETON meteorological dataset than when driven with the WFDEI-GPCC dataset by 4 PgC year−1. At regional scales, differences between two were observed with the WFDEI-GPCC driven model simulations estimating higher GPP in the tropics (at 5º N–5º S) and the PRINCETON driven model simulations estimating higher GPP in the extratropics (at 30º N–60º N).

Share - Bookmark

Cite this article

Collected from