Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
M. Jung; G. Le Maire; S. Zaehle; S. Luyssaert; M. Vetter; G. Churkina; P. Ciais; N. Viovy; M. Reichstein (2007)
Publisher: Copernicus Publications
Journal: Biogeosciences
Languages: English
Types: Article
Subjects: [PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO], DOAJ:Earth and Environmental Sciences, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, DOAJ:Earth Sciences, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, QH540-549.5, QE1-996.5, Geology, QH501-531, Life, [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, Ecology, [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph], [ PHYS.ASTR.CO ] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO], [ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment, Evolution, DOAJ:Biology, [ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph], QH301-705.5, Q, [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, Science, DOAJ:Biology and Life Sciences, QH359-425, Biology (General)
International audience; Three terrestrial biosphere models (LPJ, Orchidee, Biome-BGC) were evaluated with respect to their ability to simulate large-scale climate related trends in gross primary production (GPP) across European forests. Simulated GPP and leaf area index (LAI) were compared with GPP estimates based on flux separated eddy covariance measurements of net ecosystem exchange and LAI measurements along a temperature gradient ranging from the boreal to the Mediterranean region. The three models capture qualitatively the pattern suggested by the site data: an increase in GPP from boreal to temperate and a subsequent decline from temperate to Mediterranean climates. The models consistently predict higher GPP for boreal and lower GPP for Mediterranean forests. Based on a decomposition of GPP into absorbed photosynthetic active radiation (APAR) and radiation use efficiency (RUE), the overestimation of GPP for the boreal coniferous forests appears to be primarily related to too high simulated LAI - and thus light absorption (APAR) – rather than too high radiation use efficiency. We cannot attribute the tendency of the models to underestimate GPP in the water limited region to model structural deficiencies with confidence. A likely dry bias of the input meteorological data in southern Europe may create this pattern.

On average, the models compare similarly well to the site GPP data (RMSE of ~30% or 420 gC/m2/yr) but differences are apparent for different ecosystem types. In terms of absolute values, we find the agreement between site based GPP estimates and simulations acceptable when we consider uncertainties about the accuracy in model drivers, a potential representation bias of the eddy covariance sites, and uncertainties related to the method of deriving GPP from eddy covariance measurements data. Continental to global data-model comparison studies should be fostered in the future since they are necessary to identify consistent model bias along environmental gradients.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bondeau, A., Kicklighter, D. W., and Kaduk, J.: Comparing global models of terrestrial net primary productivity (NPP): importance of vegetation structure on seasonal NPP estimates, Global Change Biol., 5, 35-45, 1999.
    • 20 Breda, N.: Ground-based measurements of leaf area index: a review of methods, instruments and current controversies, J. Experimental Botany, 54, 2403-2417, 2003.
    • Churkina, G., Tenhunen, J., Thornton, P., Falge, E. M., Elbers, J. A., Erhard, M., Grunwald, T., Kowalski, A. S., Rannik, U., and Sprinz, D.: Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model, Ecosyst., 6, 168-184, 25 2003.
    • Cowling, S. A. and Field, C. B.: Environmental control of leaf area production: Implications for vegetation and land-surface modeling. Global Biogeochem. Cycles, 17, 1007, doi:10.1029/2002GB001915, 2003.
    • 4, 1353-1375, 2007 Cramer, W., Kicklighter, D. W., Bondeau, A., Moore, B., Churkina, C., Nemry, B., Ruimy, A., and Schloss, A. L.: Comparing global models of terrestrial net primary productivity (NPP): overview and key results, Global Change Biol., 5, 1-15, 1999.
    • Feser, F., Weisse, R., and von Storch, H.: Multi-decadal Atmospheric Modeling for Europe 5 Yields Multi-purpose Data, EOS Transactions, 82, 305-310, 2001.
    • Hicke, J. A.: NCEP and GISS solar radiation data sets available for ecosystem modeling: Description, differences, and impacts on net primary production, Global Biogeochem. Cycles, 19, GB2006, doi:10.1029/2004GB002391, 2005.
    • IGBP-DIS: Global Soil Data Products CD-ROM. Global Soil Data Task 2000.
    • 10 Jacob, D. and Podzun, R.: Sensitivity studies with the regional climate model REMO, Meteorol.
    • Atmos. Phys., 63, 119-129, 1997.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The 15 NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437-471, 1996.
    • Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199, 2005.
    • 20 Kucharik, C. J., Barford, C. C., El Maayar, M., Wofsy, S. C., Monson, R. K., and Baldocchi, D.
    • D.: A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange, Ecol. Modell., 196, 1-31, 2006.
    • Loescher, H. W., Law, B. E., Mahrt, L., Hollinger, D. Y., Campbell, J., and Wofsy, S. C.: Uncer25 tainties in, and interpretation of, carbon flux estimates using the eddy covariance technique, J. Geophys. Res.-Atmos., 111, D21S90, doi:10.1029/2005JD006932, 2006.
    • McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: Car30 bon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models, Global Biogeochem. Cycles, 15, 183-206, 2001.
    • Moorcroft, P. R.: How close are we to a predictive science of the biosphere?, Trends in Ecology 4, 1353-1375, 2007 & Evolution, 21, 400-407, 2006.
    • Morales, P., Sykes, M. T., Prentice, I. C., Smith, P., Smith, B., Bugmann, H., Zierl, B., Friedlingstein, P., Viovy, N., Sabate, S., Sanchez, A., Pla, E., Gracia, C. A., Sitch, S., Arneth, A., and Ogee, J.: Comparing and evaluating process-based ecosystem model predictions of carbon 5 and water fluxes in major European forest biomes, Global Change Biol., 11, 2211-2233, 2005.
    • Oren, R., Hseih, C. I., Stoy, P., Albertson, J., McCarthy, H. R., Harrell, P., and Katul, G. G.: Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements, Global Change Biol., 10 12, 883-896, 2006.
    • Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosci., 3, 571-583, 2006.
    • 15 Rannik, U., Kolari, P., Vesala, T., and Hari, P.: Uncertainties in measurement and modelling of net ecosystem exchange of a forest, Agric. Forest Meteorol., 138, 244-257, 2006.
    • Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Migli20 etta, F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Global Change Biol., 11, 1424-1439, 2005.
    • Richardson, A. D., Hollinger, D. Y., Burba, G. G., Davis, K. J., Flanagan, L. B., Katul, G. G., 25 Munger, J. W., Ricciuto, D. M., Stoy, P. C., Suyker, A. E., Verma, S. B., and Wofsy, S. C.: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes, Agric. Forest Meteorol., 136, 1-18, 2006.
    • Ruimy, A., Kergoat, L., and Bondeau, A.: Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency, Global 30 Change Biol., 5, 56-64, 1999.
    • Scurlock, J. M. O., Cramer, W., Olson, R. J., Parton, W. J., and Prince, S. D.: Terrestrial NPP: Toward a consistent data set for global model evaluation, Ecol. Appl., 9, 913-919, 1999.
    • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., 4, 1353-1375, 2007 Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9, 161-185, 2003.
    • Tedeschi, L. O.: Assessment of the adequacy of mathematical models, Agric. Syst., 89, 225- 5 247, 2006.
    • Thornton, P.: “Regional Ecosystem Simulation: Combining Surface- and Satellite-Based Observations to Study Linkages between Terrestrial Energy and Mass Budgets.” Unpublished PhD thesis, University of Montana, 1998.
    • Thornton, P.: Modeling and measuring the effects of disturbance history and climate on carbon 10 and water budgets in evergreen needleleaf forests, Agric. Forest Meteorol., 113, 185-222, 2002.
    • Vetter, M., Churkina, G., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Heimann, M., Jones, C., Jung, M., Papale, D., Reichstein, M., Tenhunen, J., Tomelleri, E., Viovy, N., and Zaehle, S.: Analyzing the causes and spatial pattern of the European 2003 15 carbon flux anomaly in Europe using seven models, Biogeosci. Discuss., 2, 1201-1240, 2007.
    • Zaehle, S., Sitch, S., Smith, B., and Hatterman, F.: Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Global Biogeochem. Cycles, 19, GB3020, doi:10.1029/2004GB002395, 2005.
    • 20 Zhao, M., Running, S. W., and Nemani, R. R.: Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses, J. Geophys. Res.-Biogeosci., 111, G01002, doi:10.1029/2004JG000004, 2006.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.