LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
V. V. Lobzin; V. V. Lobzin; A. V. Pavlov (2002)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809
Experimental data acquired by the Ionospheric Digital Database of the National Geophysical Data Center, Boulder, Colorado, from 1957 to 1990, are used to study the dependence of the G condition, F1-layer, and NmF2 negative disturbance occurrence probabilities on the solar zenith angle during summer, winter, spring, and autumn months in latitude range 1 (between - 10° and + 10° of the geomagnetic latitude, 8), in latitude range 2 (10° < |F| < 30°), in latitude range 3 (30° < |j| < 45°, 30° < |F| < 45°), in latitude range 4 (45° < |j| < 60°, 45° < |F| < 60°), and in latitude range 5 (60° < |F| < 90°), where j is the geographic latitude. Our calculations show that the G condition is more likely to occur during the first half of a day than during the second half of a day, at all latitudes during all seasons for the same value of the solar zenith angle. The F1-layer occurrence probability is larger in the first half of a day in comparison with that in the second half of a day for the same value of the solar zenith angle in latitude range 1 for all seasons, while the F1-layer occurrence probability is approximately the same for the same solar zenith angle before and after noon in latitude ranges 4 and 5. The F1-layer and G condition are more commonly formed near midday than close to post sunrise or pre-sunset. The chance that the day-time F1-layer and G condition will be formed is greater in summer than in winter at the given solar zenith angle in latitude ranges 2–5, while the F1-layer occurrence probability is greater in winter than in summer for any solar zenith angle in latitude range 1. The calculated occurrence probability of the NmF2 weak negative disturbances reaches its maximum and minimum values during daytime and night-time conditions, respectively, and the average night-time value of this probability is less than that by day for all seasons in all studied latitude regions. It is shown that the NmF2 normal, strong, and very strong negative disturbances are more frequent on average at night than by day in latitude ranges 1 and 2 for all seasons, reaching their maximum and minimum occurrence probability values at night and by day, respectively. This conclusion is also correct for all other studied latitude regions during winter months, except for the NmF2 normal and strong negative disturbances in latitude range 5. A difference in the dependence of the strong and very strong NmF2 negative disturbance percentage occurrences on the solar zenith angle is found between latitude ranges 1 and 2. Our results provide evidence that the daytime dependence of the G condition occurrence probability on the solar zenith angle is determined mainly by the dependence of the F1-layer occurrence probability on the solar zenith angle in the studied latitude regions for winter months, in latitude range 2 for all seasons, and in latitude ranges 4 and 5 for spring, summer, and autumn months. The solar zenith angle trend in the probability of the G condition occurrence in latitude range 3 arises in the main from the solar zenith angle trend in the F1-layer occurrence probability. The solar zenith angle trend in the probabilities of strong and very strong NmF2 negative disturbances counteracts the identified solar zenith angle trend in the probability of the G condition occurrence.

Key words. Ionosphere (ionospheric disturbances, ionosphere-atmosphere interactions, ion chemistry and composition)
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abdu, M. A.: Outstanding problems in the equatorial ionospherethermosphere electrodynamics relevant to spread F, J. Atmos. Sol. Terr. Phys., 63, 869-884, 2001.
    • Aravindakshan, P. and Iyer, K. N.: Day-to-day variability in ionospheric electron content, J. Atmos. Terr. Phys., 55, 1565-1573, 1993.
    • Babcock, R. R., Jr. and Evans, J. V.: Seasonal and solar cycle variations in the thermospheric circulation observed over Millstone Hill, J. Geophys. Res., 84, 7348-7352, 1979.
    • Banks, P. M., Schunk, R. W., and Raitt, W. J.: NO+ and O+ in the high latitude F-region, Geophys. Res. Lett, 1, 239-242, 1974.
    • Buonsanto, M. J.: Observed and calculated F2 peak heights and derived meridional winds at mid-latitudes over a full solar cycle, J. Atmos. Terr. Phys., 52, 223-240, 1990.
    • Buonsanto, M. J.: Ionospheric storms - a review, Space Science Reviews, 88, 563-601, 1999.
    • Brunelli, B. E. and Namgaladze, A. A.: Physics of the ionosphere (in Russian), Nauka, Moscow, 1988.
    • Deminova, G. F., Shashunkina, V. M., and Goncharova, E. E.: A global empirical model of effects of large-scale internal gravity waves in the night-time ionosphere, J. Atmos. Sol. Terr. Phys., 60, 227-245, 1998.
    • DuCharme, E. D. and Petrie, L. E.: A method for predicting the F1- layer critical frequency based on the Zu¨rich smoothed sunspot number, Radio Sci., 8, 837-839, 1973.
    • Fejer, B. G.: The electrodynamics of the low latitude ionosphere: recent results and future challenges, J. Atmos. Terr. Phys., 59, 1465-1482, 1997.
    • Field, P. R., Rishbeth, H., Moffett, R. J., Idenden, D. W., FullerRowell, T. G., Millward, G. H., and Aylward, A. D.: Modelling composition changes in F-layer storms, J. Atmosph. Terr. Phys., 60, 523-543, 1998.
    • Forbes, J. M., Palo, S. E., and Zhang, X.: Variability of the ionosphere, J. Atmos. Terr. Phys., 62, 685-693, 2000.
    • Fukao, S., Oliver, W. L., Onishi, Y., Takami, T., Sato, T., Tsuda, T., Yamamoto, M., and Kato, S.: F-region seasonal behavior as measured by the MU radar, J. Atmos. Terr. Phys., 53, 599-618, 1991.
    • Fuller-Rowell, T. J., Codrescu, M. V., Moett, R. J., and Quegan, S.: On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 101, 2343-2353, 1996.
    • Fuller-Rowell, T. J., Codrescu, M. C., and Wilkinson, P.: Quantitative modeling of the ionospheric response to geomagnetic activity, Ann. Geophysicae, 18, 766-781, 2000.
    • Ha¨ggstro¨m, I. and Collis, P. N.: Ion composition changes during F-region density depletions in the presence of electric fields at auroral latitudes, J. Atmos. Terr. Phys., 52, 519-529, 1990.
    • Hedin, A. E.: MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649-4662, 1987.
    • Hocke, K. and Schlegel, K.: A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995, Ann. Geophysicae, 14, 917-940, 1996.
    • King, G. A. M.: The ionospheric F-region during a storm, Planet. Space Sci., 9, 95-100, 1962.
    • Krinberg, I. A. and Tashchilin, A. V.: Refilling of geomagnetic force tubes with a thermal plasma after magnetic disturbance, Ann. Geophysicae, 38, 25-32, 1982.
    • Krinberg, I. A. and Tashchilin, A. V.: Ionosphere and plasmasphere, Nauka, Moscow, 1984 (in Russian).
    • Lobzin, V. V. and Pavlov, A. V.: G condition in the F2 region peak electron density: a statistical study, Ann. Geophysicae, 20, 523- 537, 2002.
    • Millward, G. H., Moffett, R. J., Quegan, S., and Fuller-Rowell, R. G.: Effects of atmospheric gravity wave on the mid-latitude ionospheric F layer, J. Geophys. Res., 98, 19173-19179, 1993.
    • Norton, R. B.: The middle-latitude F-region during some severe ionospheric storms, Proc. IEEE, 57, 1147-1149, 1969.
    • Oliver, W. L.: Neutral and ion composition changes in the F-region over Millstone Hill during the equinox transition study, J. Geophys. Res., 95, 4129-4134, 1990.
    • Pavlov, A. V.: The role of vibrationally excited oxygen and nitrogen in the ionosphere during the undisturbed and geomagnetic storm period of 6-12 April 1990, Ann. Geophysicae, 16, 589- 601, 1998.
    • Pavlov, A. V. and Buonsanto, M. J.: Anomalous electron density events in the quiet summer ionosphere at solar minimum over Millstone Hill, Ann. Geophysicae, 16, 460-469, 1998.
    • Pavlov, A. V., Buonsanto, M. J., Schlesier, A. C., and Richards, P. G.: Comparison of models and data at Millstone Hill during the 5-11 June 1991 storm, J. Atmosph. Terr. Phys., 61, 263-279, 1999.
    • Pavlov, A. V. and Foster, J. C.: Model/data comparison of F-region ionospheric perturbation over Millstone Hill during the severe geomagnetic storm of 15-16 July 2000, J. Geophys. Res., 105, 29 051-29 070, 2001.
    • Polyakov, I. A., Shchepkin, L. A., Kazimirovsky, E. S., and Kokourov, V. D.: Ionospheric processes (in Russian), Nauka, Novosibirsk, 1968.
    • Pro¨lss, G. W.: Magnetic storm associated perturbations of the upper atmosphere: Recent results obtained by satellite-borne gas analyzers, Rev. Geophys. Space Phys., 18, 183-202, 1980.
    • Pro¨lss, G. W.: Ionospheric F-region storms, In Handbook of Atmospheric Electrodynamic, ed. by H. Volland, 2, 195-248. CRC Press, Boca Raton, FL, 1995.
    • Ratcliffe, J. A.: The formation of the ionospheric layers F-1 and F-2, J. Atmosph. Terr. Phys., 8, 260-269, 1956.
    • Ratcliffe, J. A.: An introduction to the ionosphere and magnetosphere, Cambridge, University Press, 1972.
    • Rees, M. H.: Physics and chemistry of the upper atmosphere, Cambridge and New York, Cambridge University Press, 1989.
    • Rees, D.: Observations and modelling of ionospheric and thermospheric disturbances during major geomagnetic storms: A review, J. Atmosph. Sol. Terr. Phys., 57, 1433-1457, 1995.
    • Richmond, A. D. and Lu, G.: Upper-atmospheric effects of magnetic storms: a brief tutorial, J. Atmosph. Sol. Terr. Phys., 62, 1115-1127, 2000.
    • Rishbeth, H.: The equatorial F-layer: progress and puzzles, Ann. Geophysicae, 18, 730-739, 2000.
    • Rishbeth, H. and Garriot, O.: Introduction to ionospheric physics, New York, Academic Press, 1969.
    • Rishbeth, H. and Muller-Wodarg, I. C. F.: Vertical circulation and thermospheric composition: a modelling study, Ann. Geophysicae, 17, 794-805, 1999.
    • Rishbeth, H., Muller-Wodarg, I. C. F., Zou, L., Fuller-Rowell, T. J., Millward, G. H., Moffett, R. J., Idenden, D. W., and Aylward, A. D.: Annual and semiannual variations in the ionospheric F2- layer: II. Physical discussion, Ann. Geophysicae, 18, 945-956, 2000.
    • Schlesier, A. C. and Buonsanto, M. J.: Observations and modeling of the 10-12 April 1997 ionospheric storm at Millstone Hill, Geophys. Res. Lett., 26, 2359-2362, 1999.
    • Scotto, C., de Gonzalez, M. M., Radicella, S. M., and Zolesi, B.: On the prediction of F1 ledge occurrence and critical frequency, Advances in Space Research, 20, 9, 1773-1775, 1997.
    • Scotto, C., Radicella, S. M., and Zolesi, B.: An improved probability function to predict the F1 layer occurrence and L condition, Radio Science, 33, 1763-1766, 1998.
    • Shchepkin, L. A., Vasiliev, K. N., Vinitskii, A. V., Grishkevich, L. V., Datsko, E. P., Kushnarenko, G. P., Moskaliuk, N. V., and Shulgina, V. I.: Seasonal variations of F1-layer parameters in a solar-maximum period (in Russian), Geomagnetism and Aeronomy, 34, 35-39, 1984.
    • Schunk, R. W., Raitt, W. J., and Banks, P. M.: Effects of electric fields on the daytime high-latitude E- and F-regions, J. Geophys. Res., 80, 3121-3130, 1975.
    • Sterling, D. L., Hanson, W. B., and Woodman, R. F.: Synthesis of data obtained at Jicamarca, Peru, during the 11 September 1969, eclipse, Radio Sci., 7, 279-289, 1972.
    • Straus, J. M. and Schulz, M.: Magnetospheric convection and upper atmospheric dynamics, J. Geophys. Res., 81, 5822-5832, 1976.
    • URSI handbook of ionogram interpretation and reduction, ed. by W. R. Piggott and K. Rawer, National Oceanic and Atmospheric Administration, Boulder, CO, 1978.
    • Wrenn, G. L., Rodger, A. S., and Rishbeth, H.: Geomagnetic storms in antarctic F-region. I. Diurnal and seasonal patterns for main phase effects, J. Atmosph. Terr. Phys., 49, 901-913, 1987.
    • Yonezawa, T., Takashi, H., and Arima, Y.: A theoretical consideration of the electron and ion density distribution in the lower portion of the F-region, J. Radio Res. Lab., 6, 21-46, 1959.
    • Zuzic, M., Scherliess, L., and Pro¨lss, G. W.: Latitudinal structure of thermospheric composition perturbations, J. Atmosph. Terr. Phys., 59, 711-724, 1997.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article