LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Li, P. X.; Sun, W. D.; Yang, J.; Shi, L.; Lang, F. K.; Jiang, W. (2013)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology
This paper focuses on backscattering mechanisms selection and supervised classification works for CETC38-X PolSAR image. Thanks to the high radar resolution, many classes of man-made objects are visible in the images. So, land-use classification becomes a more meanful application using PolSAR image, but it involves the selection of classifiers and backscattering mechanisms. In this paper we apply SVM as the classifier and GA as the features selection method. Finally, after we find the best parameters and the suitable polarimetric information, the overall accuracy is up to 97.49%. The result shows SVM is an effective algorithm compared to Wishart and BP classifiers.
  • No references.
  • No related research data.
  • No similar publications.