Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Verstraeten , W. W.; Muys , B.; Feyen , J.; Veroustraete , F.; Minnaert , M.; Meiresonne , L.; De Schrijver , A. (2005)
Publisher: European Geosciences Union
Languages: English
Types: Article
Subjects: [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere
This paper focuses on the quantification of the green – vegetation related – water flux of forest stands in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The tested approach for calculating the water use by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU) components – transpiration, soil and interception evaporation – between forest and cropland.

For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000–August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L.), but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.).

A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time series. With an average annual rainfall of 819 mm, the results reveal that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively). Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration. Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper, Rome, 56, 1998.
    • Anderson, M. P. and Woessner, W. W.: Applied Groundwater Modelling Simulation of Flow and Advective Transport, University Press, Cambridge, 296 pp., 1992.
    • Bastiaanssen, W. G. M., Pelgrum, H., Roerink, G., and Soeterink, K.: Soil moisture conditions in the Netherlands during the summer of 1995 interpreted from satellite measurements, in: GIS and remote sensing techniques in land- and water management, edited by: van Dijk, A. and Bos, M. G., Kluwer, Amsterdam, 69-86, 2001.
    • Bosch, J. M. and Hewlett, J. D.: A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration, J. Hydrol., 55, 3-23, 1982.
    • Belmans, C., Wesseling, J. G., and Feddes, R. A.: Simulation model of the water balance of a cropped soil: SWATRE, J. Hydrol., 63, 271-286, 1983.
    • Brauda, I., Varado, N., and Olioso, A.: Comparison of root water uptake modules using either the surface energy balance or potential transpiration, J. Hydrol., 301, 267-286, 2005.
    • Cameira, M. R., Fernando, R. M., Ahuja, L., and Pereira, L.: Simulating the fate of water in field soil-crop environment, J. Hydrol., in press, 1-24, 2005.
    • Cerma´k, J., Ulehla, J., Kucera, J., and Penka, M.: Sap flow rate and transpiration dynamics in full grown oak (Quercus robur L.) in floodplain forest exposed to seasonal floods as related to potential evapotranspiration and tree dimensions, Biol. Plantarum (Praha), 24(6), 446-460, 1982.
    • Cerma´k, J. and Nadezhdina, N.: Sapwood as the scaling parameter - defining according to xylem water content or radial pattern of sap flow? Annales des Sciences forestie`res, 55, 509-521, 1998.
    • Choisnel, E., de Villele, O., and Lacroze, F.: Une approche uniformise´e du calcul de l'e´vapotranspiration potentielle pour l'ensemble des pays de la communaute´ europe´enne, Commission of the European communities, Brussels-Luxemburg, 176 pp., 1992.
    • Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied Hydrology. McGraw-Hill international editions, Singapore, 572 pp., 1993.
    • Coners, H. and Leuschner, C.: In situ measurement of fine root water absorption in three temperate tree species - Temporal variability and control by soil and atmospheric factors, Basic and Applied Ecol., 6, 395-405, 2005.
    • De Bruin, H. A. R., van den Hurk, B. J. J. M., and Kohiesk, W.: The scintillation method tested over a dry vineyard area, BoundaryLayer Meteorol., 76, 25-40, 1995.
    • Dolman, A. J., Moors, E. J., Elbers, J. A., and Snijders, W.: Evaporation and surface conductance of three temperate forests in the Netherlands, Ann. Sci. For., 55, 255-270, 1998.
    • Dolman, H., Moors, E., Elbers, J., Snijders W., and Hamaker, P.: Het waterverbruik van bossen in Nederland, Alterra Wageningen (in Dutch), 2000.
    • Doorenbos, J. and Pruitt, W. O.: Crop water requirements, FAO Irrigation and Drainage Paper, 24, Rome, Italy, 1977.
    • Ducheyne, S., Schadecka, N., Vanongeval, L., Vandendriessche, H., and Feyen, J.: Assessment of the parameters of a mechanistic soil-crop-nitrogen simulation model using historic data of experimental field sites in Belgium, Agric. Water Manag., 51, 53-78, 2001.
    • Edraki, M., So, H. B., and Gardner, E. A.: Water balance of Swamp Mahogany and Rhodes grass irrigated with treated sewage effluent, Agric. Water Manag., 67, 157-171, 2004.
    • Feddes, R. A., Kowalik, P. J., and Zazadyn, H.: Simulation of field water use and crop yield, Simulation Monographs, PUDOC, Wageningen, the Netherlands, 189 pp., 1978.
    • Gochis, D. J. and Cuenca, R. H.: Plant water use and crop curves for hybrid poplars, J. Irrigation and Drainage Engineering, 126, 206-214, 2000.
    • Hall, R. L. and Roberts, J. M.: Hydrological aspects of new broadleaf plantations, SEESOIL, 6, 2-38, 1990.
    • Homaee, M., Dirksen, C., and Feddes, R. A: Simulation of water uptake II. Non-uniform transient salinity using different macroscopic reduction functions, Agric. Water Manag., 57, 89-110, 2002a.
    • Homaee, M., Feddes, R. A., and Dirksen, C.: Simulation of water uptake II. Non-uniform transient water stress using different reduction functions, Agric. Water Manag., 57, 111-126, 2002b.
    • Hupet, F. and Vanclooster, M.: Comments on “Water flux estimates from a Belgian Scots pine stand: a comparison of different approaches” by Meiresonne, L., Sampson, D. A., Kowalski, A. S., Janssens, I. A., Nadezhdina, N., Cerma´k, J., Van Slycken, J., and Ceulemans, R., J. Hydrol., 2003, 230-252, J. Hydrol., 291, 150- 153, 2004.
    • Huygen, J., Van Dam, J. C., Kroes, J. G., and Wesseling, J. G.: SWAP 2.0: input and output manual, Wageningen Agricultural University, and DLO-Staring Centrum, Wageningen, 52 pp., 1997.
    • ICP: International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests, http://www. icp-forests.org, 2005.
    • Jobson, J. D.: Applied multivariate data analysis. 2: Categorical and multivariate methods, Springer New York, 1992.
    • Johnson, R. A. and Wichern, D. W.: Applied multivariate statistical analysis, Prentice-Hall International, Inc, 1992.
    • Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., and Baret, F.: Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography, Agric. For. Meteorol., 121, 19-35, 2004a.
    • Jonckheere, I., Nackaerts, K., Muys, B., and Coppin, P.: Optimalisation of in-situ LAI determination by means of forest stand models, in: Proceedings of International Conference on Modelling Forest production, 19-23 April 2004, Vienna, Austria, 184-188, 2004b.
    • Kang, Y., Wang, Q.-G., and Liu, H.-J.: Winter wheat canopy interception and its influence factors under sprinkler irrigation, Agric. Water Manag., 74, 189-199, 2005.
    • Klute, A. (Ed.): Methods of soil analysis, Part 1, Physical and mineralogical methods, 2nd ed. Agronomy 9(2), American Society of Agronomy, Madison, Wisconsin, USA, 1986.
    • Knotters, M. and Bierkens, M. F. P.: Physical basis of time series models for water table depths, Water Resour. Res., 36(1), 181- 188, 2000.
    • Ladekarl, U. L.: Estimation of the components of soil water balance in a Danish oak stand from measurements of soil moisture using TDR, For. Ecol. Manag., 104, 227-238, 1998.
    • Larcher, W.:Water economy in plant communities, in: Physiological Plant Ecology, 2nd ed., edited by: Larcher, W., Springer, Berlin, 1995.
    • Meiresonne, L., Nadezhdina, N., Cerma´k, J., Van Slycken, J., and Ceulemans, R.: Measured sap flow and simulated transpiration from a poplar stand in Flanders (Belgium), Agric. For. Meteorol., 96, 165-179, 1999.
    • Meiresonne, L., Sampson, D. A., Kowalski, A. S., Janssens, I. A., Nadezhdina, N., Cerma´k, J., Van Slycken, J., and Ceulemans, R.: Water flux estimates from a Belgian Scots pine stand: a comparison of different approaches, J. Hydrol., 270, 230-252, 2003.
    • Mohren, G. M. J. and van de Veen, J. R.: Forest growth in relation to site conditions. Application of the model FORGRO to the Solling spruce site, Ecol. Model., 83(1-2), 173-183, 1995.
    • Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12(3), 513- 522, 1976.
    • Nackaerts, K.: Modeling of leaf area index as a scale-integrated indicator for forest monitoring, PhD-Thesis No. 529, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, 224 pp., 2002.
    • Nackaerts, K., Wagendorp, T., Coppin, P., Muys, M., and Gombeer, R.: A correction of indirect Leaf Area Index measurements for a non random distribution of needles on shoots, in: Proceedings of the International Conference on Systems and Sensors for the New Millennium of The International Symposium on Spectral Sensing Research, 31 October-4 November, 1999, Las Vegas - Nevada, USA, 2001.
    • Nadezhdina, N. and Cerma´k, J.: Instrumental methods for studies of structure and function of root systems of large trees, J. Experiment. Bot., 54(387), 1511-1521, 2003.
    • Nizinski, J., Morand, D., and Saugier, B.: Variation of stomatal resistance with leaf age in Quercus petraea: effect on the soilwater balance of an oak forest, Tree Physiology, 46, 429-432, 1989.
    • Peck, A. and Mayer, H.: Einfluss von Bestandesparametern auf die Verdunstung von Wa¨ldern (in German), Forstwiss. Centrabl., 115, 1-9, 1996.
    • Penning de Vries, F. W. T. and Van Laar, H. H.: Simulation of plant growth and crop production, Simulation Monographs, PUDOC, Wageningen, The Netherlands, 1982.
    • Roberts, J. M. and Rosier, P. T. W.: Comparative estimates of transpiration of ash and beech forests at chalk site in southern Britain, J. Hydrol., 162, 229-245, 1994.
    • Samson, R., Follens, S., and Lemeur, R.: Scaling leaf photosynthesis to canopy in a mixed deciduous forest. I. Model description, Silva Gandavensis, 62, 1-21, 1997.
    • Samson, R.: An experimental and modelling approach to the actual evapotranspiration in a mixed forest ecosystem (Experimental forest Aelmoeseneie at Gontrode), PhD-thesis, Universiteit Gent, 294 pp., 2001.
    • SAS/STAT software: Version 6, 4th edn., Volume 1, Cary, NC: SAS Institute Inc, 1992.
    • Schaap, M. G., Bouten, W., and Verstraten, J. M.: Forest floor water content dynamics in a Douglas fir stand, J. Hydrol., 201, 367- 383, 1997.
    • Spitters, C. J. T.: Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis. Part II., Calculation of canopy photosynthesis, Agric. For. Meteorol., 38, 231-242, 1986.
    • Spitters, C. J. T, Toussaint H. A. J., and Goudriaan, J.: Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis. Part I., Components of incoming solar radiation, Agric. For. Meteorol., 38, 217-229, 1986.
    • Spitters, C. J. T., van Keulen, H., and Van Kraailingen, D. W. G.: A simple but universal crop growth simulation model, SUCROS87, in: Simulation and systems management in crop protection, edited by: Rabbinge, R., Van Laar, H., and Ward, S., Simulation Monographs, PUDOC, Wageningen, The Netherlands, 1988.
    • Timmerman, A., Mertens, J., Kroes, J. G., and Vandenbosch, T.: Eindrapport projectonderdeel B. Watermanagement op bedrijfsniveau: “integratie van het beregeningsadviessysteem met het peil- en nutrie¨ntenbeheer”. Interregprogramma voor het Benelux Middengebied (in Dutch), 113 pp., 2001.
    • Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic determination of soil water content: Measurements in coaxial transmission lines, Water Resour. Res., 16, 574-582, 1980.
    • Vanclooster, M., Viaene, P., Diels, J., and Christiaens, K.: WAVE, a mathematical model for simulating water and agrochemicals in the soil and vadose environment. Reference and user's manual, Release 2.0, Institute for Land and Water Management, Katholieke Universiteit Leuven, Leuven, 147 pp., 1994.
    • Vanclooster, M., Viaene, P., Diels, J., and Feyen J.: A deterministic evaluation analysis applied to an integrated soil-crop model, Ecol. Mod., 81, 183-195, 1995.
    • Vanclooster, M., Viaene, P. Christiaens, K., and Ducheyne, S.: WAVE, a mathematical model for simulating water and agrochemicals in the soil and the vadose environment. Reference and user's manual, release 2.1. Institute for Land and Water Management, Katholieke Universiteit Leuven, Leuven, 15 pp., 1996.
    • Vanderborght, J., Vanclooster, M., Timmerman, A., Seuntjens, P., Mallants, D., Kim, D.-J., Jacques, D., Hubrechts, L. Gonzalez, C., Feyen, J., Diels, J., and Deckers, J.: Overview of inert tracer experiments in key Belgian soil types: Relation between transport and soil morphological and hydraulic properties, Water Resour. Res., 37(12), 2873-2888, 2001.
    • van Genuchten, M.: A closed-form equation for predicting the hydraulic conductivity of soil, Soil Science Society of American Journal, 44, 892-898, 1980.
    • van Genuchten, M., Leije, F. J., and Yates, S. R.: The RETC code for quantifying the hydraulic functions of unsaturated soils, IAGDW12933934, US Environmental Protection Agency, ADA, Oklahoma 74820, 1991.
    • van Keulen, H., Penning de Vries, F. W. T., and Drees, E. M.: A summary model for crop growth, in: Simulation of plant growth and crop production, edited by: Penning de Vries, F. W. T. and Van Laar, H., Simulation Monographs, PUDOC, Wageningen, the Netherlands, 87-97, 1982.
    • Verma, S. B.: Micrometeorological Methods for Measuring Surface Fluxes of Mass and Energy, Remote Sens. Rev., 5(1), 99-115, 1990.
    • Verstraeten, W. W., Minnaert, M., Meiresonne, L., Lemeur. R., Devos., B, Van Slycken, J., Deckers, J., Muys, B., and Feyen, J.: Kwantitatieve analyse van de verdamping van bossen in vergelijking met weide en akkerlaned (in Dutch), VLINA-9906, 225 pp., 2001.
    • Verstraeten, W. W., Veroustraete, F., and Feyen, J.: Estimating evapotranspiration of European forests from NOAA-imagery at satellite overpass time: Towards an operational processing chain for integrated optical and thermal sensor data products, Remote Sens. Environ., 96(2), 256-276, 2005.
    • Warren, J. M., Meinzer, F. C., Brooks, J. R., and Domec, J. C.: Vertical distribution of soil water storage and release dynamics in Pacific Northwest coniferous forests, Agric. For. Meteorol., 130, 39-58, 2005.
    • Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., and Coppin, P.: Review of methods for in situ leaf area index (LAI) determination. Part II. Estimation of LAI, errors and sampling, Agric. For. Meteorol., 121, 37-53, 2004.
    • White, M. A.: Monitoring en modelling growing season dynamics, PhD-thesis, University of Montana, 9, 345, 1999.
    • Wolfringer, R. and Chang, M.: Comparing SAS® GLM and MIXED Procedures for Repeated Measures. SUGI Proceedings, 1995, SAS Institute Inc., Cary, NC, 1995.
    • Zhao, C., Feng, Z., and Chen, G.: Soil water balance simulation of alfalfa (Medicago sativa L.) in the semiarid Chinese Loess Plain, Agric. Water Manag., 69, 101-114, 2004.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article