Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schulz, Michal; Orland, Timna; Mehlmann, Alexander; Rothschild, Avner; Fritze, Holger (2017)
Languages: English
Types: Article
Nano-ionic materials made of strontium titanate (SrTiO3, STO) and solid solutions of strontium ferrite in STO (SrTi1 − xFexO3, STF) are grown on single crystalline STO substrates and characterized. Since STF exhibits an oxygen deficiency and, simultaneously, enables oxygen interstitial defects, a space charge area close to the STO | STF interface is present. Oxygen tracer diffusion experiments and impedance spectroscopy at temperatures from 500 to 700 °C and at oxygen partial pressure ranging from 10−3 to 10−23 bar confirm fast oxygen transport caused by enhanced ionic conductivity at the interface. There, an oxygen diffusion coefficient of 3. 4 × 10−10 m2 s−1 at 600 °C and a p type conductivity of about 360 S m−1 at 700 °C are calculated. Such structures open new options in design of nano-ionic materials for oxygen sensors and energy conversion at temperatures lower than those of conventional materials such as yttrium-doped zirconia.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Badwal, S.: Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity, Solid State Ionics, 52, 23-32, 1992.
    • Balachandran, U. and Eror, N.: Electrical Conductivity in Strontium Titanate, J. Solid State Chem., 39, 351-359, 1981.
    • Chan, N.-H., Sharma, R., and Smyth, D.: Nanostoichiometry in SrTiO3, J. Electrochem. Soc., 128, 1762-1768, 1981.
    • Comsol: COMSOL Multiphysics, COMSOL Multiphysics 5.1, https://www.comsol.de/comsol-multiphysics (last access: 14 April 2015), 2016.
    • De Souza, R.: The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3, Phys. Chem. Chem. Phys., 11, 9939-9969, 2009.
    • De Souza, R.: Oxygen Diffusion in SrTiO3 and Related Perovskite Oxides, Adv. Funct. Mater., 25, 6326-6342, 2015.
    • Fergus, J. W.: Perovskite oxides for semiconductor-based gas sensors, Sensor. Actuat. B-Chem., 123, 1169-1179, 2007.
    • Gerstl, M., Frömling, T., Schintlmeister, A., Hutter, H., and Fleig, J.: Measurement of 18O tracer diffusion coefficients in thin yttria stabilized zirconia films, Solid State Ionics, 184, 23-26, 2011.
    • Gömann, K., Borchardt, G., Gunhold, A., Maus-Friedrichs, W., and Baumann, H.: Ti diffusion in La-doped SrTiO3 single crystals, Phys. Chem. Chem. Phys., 6, 3639-3644, 2004.
    • Gömann, K., Borchardt, G., Schulz, M., Gömann, A., MausFriedrichs, W., Lesage, B., Kaïtasov, O., Hoffman-Eifert, S., and Schneller, T.: Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions, Phys. Chem. Chem. Phys., 7, 2053-2060, 2005.
    • Heilig, C.: Characterisierung der elekrischen Eigenschaften von Sr(Ti,Fe)O3 im Hinblick auf die Anwendung in Sauerstoffsensoren (Characterization of the Electrical Properties of Sr(Ti, Fe)O3 in View of an Application as Oxygen Sensors), Diploma Thesis (in German), Universität Karlsruhe (TH), Karlsruhe, Germany, 1996.
    • Hu, Y., Tan, O., Cao, W., and Zhu, W.: A low temperature nanostructured SrTiO3 thick film oxygen gas sensor, Ceramics International, 30, 1819-1822, doi:10.1016/j.ceramint.2003.12.068, 2004.
    • Ioffe, A., Rutman, D., and Karpachov, S.: On the nature of the conductivity maximum in zirconia-based solid electrolytes, Electrochemica Acta, 23, 141-142, 1978.
    • Kilo, M., Argirusis, C., Borchardt, G., and Jackson, R.: Oxygen diffusion in yttria stabilised zirconia - experimental results and molecular dynamics calculations, Phys. Chem. Chem. Phys., 5, 2219-2224, 2004.
    • Kozhevnikov, V. L., Leonidov, I. A., Patrakeev, M. V., Mitberg, E. B., and Poeppelmeier, K. R.: Electrical Properties of the Ferrite SrFeOy at High Temperatures, J. Solid State Chem., 158, 320- 326, 2001.
    • Kuhn, M., Kim, J. J., Bishop, S. R., and Tuller, H. L.: Oxygen Nonstoichiometry and Defect Chemistry of Perovskite-Structured Bax Sr1 x Ti1 y Fey O3 y=2C Solid Solutions, Chem. Mater., 25, 2970-2975, 2013.
    • Metlenko, V., Ramadan, A. H. H., Gunkel, F., Du, H., Schraknepper, H., Hoffmann-Eifert, S., Dittmann, R., Waser, R., and De Souza, R. A.: Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3?, Nanoscale, 6, 12864-12876, doi:10.1039/C4NR04083J, 2014.
    • Moos, R., Menesklou, W., Schreiner, H.-J., and Härdtl, K. H.: Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control, Sensor. Actuat. B-Chem., 67, 178-183, 2000.
    • Ohly, C., Hoffmann-Eifert, S., Guo, X., Schubert, J., and Waser, R.: Electrical Conductivity of Epitaxial SrTiO3 Thin Films as a Function of Oxygen Partial Pressure and Temperature, J. Am. Ceram. Soc., 89, 2845-2852, 2006.
    • Paladino, A. E., Rubin, L. G., and Waugh, J. S.: Oxygen ion diffusion in single crystal SrTiO3, J. Phys. Chem. Solids, 26, 391- 397, 1965.
    • Rothschild, A.: Electronic Structure, Defect Chemistry, and Transport Properties of SrTi1 x Fex O3 y Solid Solutions, Chem. Mater., 18, 3651-3659, 2006.
    • Schulz, M., Brillo, J., Stenzel, C., and Fritze, H.: Oxygen partial pressure control for microgravity experiments, Solid State Ionics, 225, 332-336, doi:10.1016/j.ssi.2012.04.008, 2012.
    • Shi, T., Chen, Y., and Guo, X.: Defect chemistry of alkaline earth metal (Sr/Ba) titanates, Prog. Mater. Sci., 80, 77-132, 2016.
    • Steinsvik, S., Bugge, R., Gønnes, J., Taftø, J., and Norby, T.: The defect structure of SrTi1 x Fex O3 y (x D 0 0:8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS), J. Phys. Chem Solids, 6, 969-976, 1996.
    • Steinsvik, S., Larring, Y. J., and Norby, T.: Hydrogen ion conduction in iron-substituted strontium titanate, SrTi1 x Fex O3 x=2 (0 x 0:8), Solid State Ionics, 143, 103-116, 2001.
    • Wagner, S., Menesklou, W., Schneider, T., and Ivers-Tiffee, E.: Kinetics of oxygen incorporation into SrTiO3 investigated by frequency-domain analysis, J. Electroceram., 13, 645-651, doi:10.1007/s10832-004-5171-2, 2004.
    • Yoo, H.-I., Song, C.-R., and Lee, D.-K.: BaTiO3 : Defect Structure, Electrical Conductivity, Chemical Diffusivity, Thermoelectric Power, and Oxygen Nonstoichiometry, J. Electroceram., 8, 5-36, 2002.
  • No related research data.
  • No similar publications.

Share - Bookmark

Related to

  • egiEGI virtual organizations: fusion

Cite this article

Collected from