LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aschonitis, Vassilis G.; Papamichail, Dimitris; Demertzi, Kleoniki; Colombani, Nicolo; Mastrocicco, Micol; Ghirardini, Andrea; Castaldelli, Giuseppe; Fano, Elisa Anna (2016)
Languages: English
Types: Article
Subjects:
The objective of the study is to provide high resolution global grids of revised annual coefficients for the Priestley-Taylor (P-T) and Hargreaves-Samani (H-S) evapotranspiration methods after calibration based on ASCE-standardized Penman-Monteith method (ASCE method includes two reference crops: short clipped grass and tall alfalfa). The analysis also includes the derivation of global grids of revised annual coefficients for solar radiation Rs estimations using the respective Rs formula of H-S. The analysis was based on global gridded climatic data of the period 1950–2000. The method for deriving annual coefficients of P-T and H-S methods was based on partial weighted averages (p.w.a.) of their mean monthly values, which eliminate the effect of monthly coefficients that occur during periods where ETo and Rs fall below a specific threshold. Five resolution global grids (30 arc-sec, 2.5, 5, 10 arc-min and 0.5 deg) of annual coefficients for each method were developed. The new coefficients were validated based on data from 140 stations located at various climatic zones of USA and Australia with expanded observations up to 2016. Nine statistical criteria including Taylor diagrams were used in the validation procedure. The validation procedure for ETo estimations of short reference crop showed that the P-T and H-S methods with the new revised coefficients outperformed in comparison to the typical methods reducing the ETo RMSE of estimated values by 39 % and 36 %, respectively. The estimations of Rs using the H-S formula with revised coefficients reduced the RMSE by 30% in comparison to the typical H-S radiation formula (the given results are based on the finer resolution grid). All the statistical criteria indicated better performance of the revised coefficients of all resolutions versus the typical coefficients used in the original methods. Finally, a raster database was built consisting of: a) global maps of revised annual coefficients for the ETo methods of P-T and H-S for both reference crops and the Rs H-S formula, b) global maps which indicate the optimum locations for using the original P-T and H-S methods and their expected error based on reference values. The provision of the database aims to improve ETo and Rs estimations which are used in hydrologic/climatic applications when climatic data are limited. The datasets produced in this study are archived in PANGAEA database (doi:10.1594/PANGAEA.868808, doi:10.1594/PANGAEA.868808) and in ESRN-database (http://www.esrn-database.org or http://esrn-database.weebly.com/).
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from