LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hetti Arachchige, N. (2013)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology
Recognition of tree stem is a fundamental task for obtaining various geometric attributes of trees such as diameter, height, stem position and so on for diverse of urban application. We propose a novel tree stem segmentation approach using geometric features corresponding to trees for high density MLS point data covering in urban environments. The principal direction and shape of point subsets are used as geometric features. Point orientation exhibits the most variance (shape of point set) of a point neighbourhood, assists to measure similarity, while shape provides the dimensional information of a group of points. Points residing on a stem can be isolated by defining various rules based on these geometric features. The shape characterization step is accomplished by estimating the structure tensor with principal component analysis. These features are assigned to different steps of our segmentation algorithm. Wrong segmentations mainly occur in the area where our rules have failed, such as vertical type objects, road poles and light post. To overcome these problems, global shape is further checked. The experiment is performed to evaluate the method; it shows that more than 90% of tree stems are detected. The overall accuracy of the proposed method is 90.6%. The results show that principal direction and shape analysis are sufficient for the tree stem recognition from MLS point cloud in a relatively complex urban area.
  • No references.
  • No related research data.
  • No similar publications.