LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Xu, Qiang; Peng, Dalei; Li, Weile; Dong, Xiujun; Hu, Wei; Tang, Minggao; Liu, Fangzhou (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: G, GE1-350, Geography. Anthropology. Recreation, QE1-996.5, Environmental technology. Sanitary engineering, Environmental sciences, Geology, TD1-1066
A catastrophic flowslide occurred at the Hongao dumpsite on 20 December 2015 in the Guangming New District of Shenzhen, China. The flowslide caused 77 causalities and damaged 33 buildings. In the absence of extreme weather conditions and seismic activity, the causes of the failure were analyzed on the basis of multi-temporal remote-sensing images, site investigation, in situ tests, laboratory tests, and numerical analyses. Site investigations showed that the volume of the displaced material was 2.32  ×  106 m3 and the volume of the pre-failure waste filling was 6.27  ×  106 m3. The flowslide was characterized by high travel velocity and long runout distance. The displaced material was primarily a mixture of silty soil and construction and demolition waste with water content of 17.3–42.4 %. The primary causes of the failure were concluded to be the following: (1) groundwater flow had stagnated in the dumpsite due to drainage system failure and the underlying impermeable granite stratum; (2) the accumulation rate and total volume of the waste filling was in exceedance of the design capacity. The flowslide may be ascribed to the development of excess pore-water pressure as evidence of liquefaction was observed at several locations, and it is postulated that such phenomena were related to the surcharge loads imposed by the unregulated disposal activities.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Blight, G.: Slope failures in municipal solid waste dumps and landfills: a review, Waste Manag. Res., 26, 448-463, doi:10.1177/0734242X07087975, 2008.
    • Blight, G. E. and Fourie, A. B.: Catastrophe revisited-disastrous flow failures of mine and municipal solid waste, Geotech. Geol. Eng., 23, 219-248, 2005.
    • Brunner, P. H. and Fellner, J.: Setting priorities for waste management strategies in developing countries, Waste Manag. Res., 25, 234-240, doi:10.1177/0734242X07078296, 2007.
    • Cascini, L., Cuomo, S., Pastor, M., and Sorbino, G.: Modeling of rainfall-induced shallow landslides of the flow-type, J. Geotech. Geoenvironmental Eng., 136, 85-98, 2009.
    • Cascini, L., Cuomo, S., Pastor, M., and Sacco, C.: Modelling the post-failure stage of rainfall-induced landslides of the flow type, Can. Geotech. J., 50, 924-934, 2013.
    • Chang, M.: A 3D slope stability analysis method assuming parallel lines of intersection and differential straining of block contacts, Can. Geotech. J., 39, 799-811, doi:10.1139/t02-020, 2002.
    • Chang, M.: Three-dimensional stability analysis of the Kettleman Hills landfill slope failure based on observed sliding-block mechanism, Comput. Geotech., 32, 587-599, 2005.
    • Chugh, A. K., Stark, T. D., and DeJong, K. A.: Reanalysis of a municipal landfill slope failure near Cincinnati, Ohio, USA, Can. Geotech. J., 44, 33-53, doi:10.1139/t06-089, 2007.
    • Dai, Z., Huang, Y., Jiang, F., and Huang, M.: Modeling the flow behavior of a simulated municipal solid waste, Bull. Eng. Geol. Environ., 75, 275-291, doi:10.1007/s10064-015-0735-8, 2016.
    • Eid, H. T., Stark, T. D., Evans, W. D., and Sherry, P. E.: Municipal solid waste slope failure. I: Waste and foundation soil properties, J. Geotech. Geoenvironmental Eng., 126, 397-407, 2000.
    • GEO-SLOPE International Ltd.: SLOPE/W, Slope stability analysis, GEO-SLOPE International Ltd., Calgary, Alberta, Canada, 2005.
    • Huang, Y. and Cheng, H.: A simplified analytical model for runout prediction of flow slides in municipal solid waste landfills, Landslides, 14, 99-107, doi:10.1007/s10346-016-0688-4, 2017.
    • Huang, Y. and Zhu, C.: Simulation of flow slides in municipal solid waste dumps using a modified MPS method, Nat. Hazards, 74, 491-508, doi:10.1007/s11069-014-1194-4, 2014.
    • Huang, Y., Dai, Z., Zhang, W., and Huang, M.: SPHbased numerical simulations of flow slides in municipal solid waste landfills., Waste Manag. Res., 31, 256-264, doi:10.1177/0734242X12470205, 2013.
    • Huvaj-Sarihan, N. and Stark, T. D.: Back-Analyses of Landfill Slope Failures, 6th Int. Conf. Case Hist. Geotech. Eng., 2, 1-7, 2008.
    • Kjeldsen, P. and Fischer, E. V: Landfill gas migration - field investigations at Skellingsted landfill, Denmark, Waste Manag. Res., 13, 467-484, 1995.
    • Kocasoy, G. and Curi, K.: The Ümraniye-Hekimbas¸i open dump accident, Waste Manag. Res., 13, 305-314, 1995.
    • Lavigne, F., Wassmer, P., Gomez, C., Davies, T. A., Sri Hadmoko, D., Iskandarsyah, T. Y. W. M., Gaillard, J., Fort, M., Texier, P., Boun Heng, M., and Pratomo, I.: The 21 February 2005, catastrophic waste avalanche at Leuwigajah dumpsite, Bandung, Indonesia, Geoenvironmental Disasters, 1, 1-12, doi:10.1186/s40677-014-0010-5, 2014.
    • Legros, F.: The mobility of long-runout landslides, Eng. Geol., 63, 301-331, available at: http://www.sciencedirect.com/science/ article/pii/S0013795201000904, (last access: 25 June 2014), 2002.
    • Merry, S. M., Kavazanjian Jr., E., and Fritz, W. U.: Reconnaissance of the July 10, 2000, Payatas landfill failure, J. Perform. Constr. Facil., 19, 100-107, 2005.
    • Mitchell, J. K., Seed, R. B., and Seed, H. B.: Kettleman Hills waste landfill slope failure. I: Liner-system properties, J. Geotech. Eng., 116, 647-668, doi:10.1061/(ASCE)0733- 9410(1990)116:4(647), 1990.
    • Ouyang, C., Zhou, K., Xu, Q., Yin, J., Peng, D., Wang, D., and Li, W.: Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China, Landslides, 2016 (April), doi:10.1007/s10346- 016-0764-9, 2016.
    • Scheidegger, A. E.: On the prediction of the reach and velocity of catastrophic landslides, Rock Mech. Rock Eng., 5, 231-236, doi:10.1007/BF01301796, 1973.
    • Srour, G.: Mine waste failure: an analysis of empirical and graphical runout prediction methods, University of British Columbia, 2011.
    • Take, W. A. and Beddoe, R. A.: Base liquefaction: a mechanism for shear-induced failure of loose granular slopes, Can. Geotech. J., 51, 496-507, doi:10.1139/cgj-2012-0457, 2014.
    • Take, W. A., Bolton, M. D., Wong, P. C. P., and Yeung, F. J.: Evaluation of landslide triggering mechanisms in model fill slopes, Landslides, 1, 173-184, doi:10.1007/s10346-004-0025-1, 2004.
    • Xu, Q., Peng, D., Li, W., Dong, X., Hu, W., Tang, M., and Liu, F.: Shenzhen Flowslide - GSD Rainfall Shear, available at: doi:10.13140/RG.2.2.10594.94400, 2017a.
    • Xu, Q., Peng, D., Li, W., Dong, X., Hu, W., Tang, M., and Liu, F.: Shenzhen flowslide - Master Cross-section Profile, available at: doi:10.13140/RG.2.2.24016.71681, 2017b.
    • Yin, Y., Li, B., Wang, W., Zhan, L., Xue, Q., Gao, Y., and Zhang, N.: Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen Landfill and Controlling Geotechnical Risks of Urbanization, Engineering, 2, 230-249, doi:10.1016/J.ENG.2016.02.005, 2016.
    • Zhang, Y., Qi, M., and Ma, H.: Slope instability and its control in Shenzhen City, Chinese J. Rock Mech. Eng., 25, 3412-3421, 2006 (in Chinese).
    • Zou, D. H.: Exploring a Waste Dump Site Failure-Possible Causes and Prevention Measures, Int. J. Geohazards Environ., 2, 25-33, 2016.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    61
    61%
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article