LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kaynak, B.; Hu, Y.; Martin, R. V.; Russell, A. G.; Choi, Y.; Wang, Y. (2008)
Languages: English
Types: Article
Subjects:
Lightning NOx emissions calculated using the US National Lightning Detection Network data were found to account for 30% of the total NOx emissions for July‚ÄďAugust 2004, a period chosen both for having higher lightning NOx production and high ozone levels, thus maximizing the likelihood that such emissions could impact peak ozone levels. Including such emissions led to modest, but sometimes significant increases in simulated surface ozone when using the Community Multi-scale Air Quality Model (CMAQ). Three model simulations were performed, two with the addition of lightning NOx emissions, and one without. Domain-wide daily maximum 8-h ozone changes due to lightning NOx were less than 2 ppbv in 71% of the cases with a maximum of 10 ppbv; whereas the difference in 1-h ozone was less than 2 ppbv in 77% of the cases with a maximum of 6 ppbv. Daily maximum 1-h and 8-h ozone for grids containing O3 monitoring stations changed slightly, with more than 43% of the cases differing less than 2 ppbv. The greatest differences were 42 ppbv for both 1-h and 8-h O3, though these tended to be on days of lower ozone. Lightning impacts on the season-wide maximum 1-h and 8-h averaged ozone decreased starting from the 1st to 4th highest values (an average of 4th highest, 8-h values is used for attainment demonstration in the US). Background ozone values from the y-intercept of O3 versus NOz curve were 42.2 and 43.9 ppbv for simulations without and with lightning emissions, respectively. Results from both simulations with lightning NOx suggest that while North American lightning production of NOx can lead to significant local impacts on a few occasions, they will have a relatively small impact on typical maximum levels and determination of Policy Relevant Background levels.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen, D. J. and Pickering, K. E.: Evaluation of lightning flash rate parameterizations for use in a global chemical transport model, J. Geophys. Res.-Atmos., 107, D15308, doi:10.1029/2005JD006680, 2002.
    • Altshuller, A. P. and Lefohn, A. S.: Background ozone in the planetary boundary layer over the united states, J. Air Waste Manage., 46, 134-141, 1996.
    • Beirle, S., Spichtinger, N., Stohl, A., Cummins, K. L., Turner, T., Boccippio, D., Cooper, O. R., Wenig, M., Grzegorski, M., Platt, U., and Wagner, T.: Estimating the NOx produced by lightning from GOME and NLDN data: a case study in the Gulf of Mexico, Atmos. Chem. Phys., 6, 1075-1089, 2006, http://www.atmos-chem-phys.net/6/1075/2006/.
    • Biazar, A. P. and McNider, R. T.: Regional estimates of lightning production of nitrogen-oxides, J. Geophys. Res.-Atmos., 100, 22 861-22 874, 1995.
    • Boccippio, D. J., Cummins, K. L., Christian, H. J., and Goodman, S. J.: Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental united states, Mon. Weather Rev., 129, 108-122, 2001.
    • Boersma, K. F., Eskes, H. J., Meijer, E. W., and Kelder, H. M.: Estimates of lightning NOx production from GOME satellite observations, Atmos. Chem. Phys., 5, 2311-2331, 2005, http://www.atmos-chem-phys.net/5/2311/2005/.
    • Bond, D. W., Zhang, R. Y., Tie, X. X., Brasseur, G., Huffines, G., Orville, R. E., and Boccippio, D. J.: NOx production by lightning over the continental united states, J. Geophys. Res.-Atmos., 106, 27 701-27 710, 2001.
    • Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (cmaq) modeling system, Appl. Mech. Rev., 59, 51-77, 2006.
    • Byun, D. W. and Ching, J. K. S.: Science algorithms of the epa models-3 community multi-scale air quality (cmaq) modeling system, Research Triangle Park, NC.EPA/600/R-99/030, 1999.
    • Carter, W. P. L.: Implementation of the saprc-99 chemical mechanism into the models-3 framework, United States Environmental Protection Agency, 2000.
    • Choi, Y., Wang, Y. H., Zeng, T., Martin, R. V., Kurosu, T. P., and Chance, K.: Evidence of lightning NOx and convective transport of pollutants in satellite observations over north america, Geophys. Res. Lett., 32, L02805, doi:10.1029/2004GL021436, 2005.
    • Cooper, O. R., Stohl, A., Trainer, M., Thompson, A. M., Witte, J. C., Oltmans, S. J., Morris, G., Pickering, K. E., Crawford, J. H., Chen, G., Cohen, R. C., Bertram, T. H., Wooldridge, P., Perring, A., Brune, W. H., Merrill, J., Moody, J. L., Tarasick, D., Nedelec, P., Forbes, G., Newchurch, M. J., Schmidlin, F. J., Johnson, B. J., Turquety, S., Baughcum, S. L., Ren, X., Fehsenfeld, F. C., Meagher, J. F., Spichtinger, N., Brown, C. C., McKeen, S. A., McDermid, I. S., and Leblanc, T.: Large upper tropospheric ozone enhancements above midlatitude north america during summer: In situ evidence from the ions and mozaic ozone measurement network, J. Geophys. Res.-Atmos., 111, D24S05, doi:10.1029/2006JD007306, 2006.
    • Cohan, D. S., Hakami, A., Hu, Y. T., and Russell, A. G.: Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis, Environ. Sci. Technol., 39, 6739-6748, 2005.
    • Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., and Stewart, M. F.: Global frequency and distribution of lightning as observed from space by the optical transient detector, J. Geophys. Res.-Atmos., 108(D1), 4005, doi:10.1029/2002JD002347, 2003.
    • Cummins, K. L., Krider, E. P., and Malone, M. D.: The us national lightning detection network (tm) and applications of cloud-toground lightning data by electric power utilities, IEEE Transactions On Electromagnetic Compatibility, 40, 465-480, 1998.
    • DeCaria, A. J., Pickering, K. E., Stenchikov, G. L., Scala, J. R., Stith, J. L., Dye, J. E., Ridley, B. A., and Laroche, P.: A cloudscale model study of lightning-generated NOx in an individual thunderstorm during sterao-a, J. Geophys. Res.-Atmos., 105, 11 601-11 616, 2000.
    • DeCaria, A. J., Pickering, K. E., Stenchikov, G. L., and Ott, L. E.: Lightning-generated NOx and its impact on tropospheric ozone production: A three-dimensional modeling study of a stratosphere-troposphere experiment: Radiation, aerosols and ozone (sterao-a) thunderstorm, J. Geophys. Res.-Atmos., 110, D14303, doi:10.1029/2004JD005556, 2005.
    • Delmas, R., Serca, D., and Jambert, C.: Global inventory of NOx sources, Nutr. Cycl. Agroecosyst., 48, 51-60, 1997.
    • Dudhia, J., Gill, D., Manning, K., Wang, W., and Bruyere, C.: Psu/ncar mesoscale modeling system tutorial class notes and users' guide (mm5 modeling system version 3), National Center for Atmospheric Research, 2005.
    • E. P. A.: Guidance on the use of models and other analyses in attainment demonstrations for the 8-hour ozone naaqs, Research Triangle Park, NC.EPA-454/R-05-002, 2005.
    • E. P. A.: Air quality criteria for ozone and related photochemical oxidants, Research Triangle Park, NC., 2006.
    • E. P. A.: air quality system (aqs): http://www.epa.gov/ttn/airs/ airsaqs, (last access: 8 January 2008), 2008a.
    • E. P. A.: clean air markets: http://camddataandmaps.epa.gov/gdm, (last access: 8 January 2008), 2008b.
    • Egorova, T., Zubov, V., Jagovkina, S., and Rozanov, E.: Lightning production of NOx and ozone, Phys. Chem. Earth Pt. C-SolarTerr. Planet. Sci., 24, 473-479, 1999.
    • Fehr, T., Holler, H., and Huntrieser, H.: Model study on production and transport of lightning-produced NOx in a euliNOx supercell storm, J. Geophys. Res.-Atmos., 109, D14303, doi:10.1029/2003JD003935, 2004.
    • Fiore, A. M., Jacob, D. J., Bey, I., Yantosca, R. M., Field, B. D., Fusco, A. C., and Wilkinson, J. G.: Background ozone over the united states in summer: Origin, trend, and contribution to pollution episodes, J. Geophys. Res.-Atmos., 107(D15), 4275, doi:10.1029/2001JD000982, 2002.
    • Grell, G. A., Dudhia, J., and Stauffer, D. R.: A description of the fifth generation penn state/ncar mesoscale model (mm5), National Centre for Atmospheric Research, Boulder, Colorado, USA. , 1995.
    • Hirsch, A. I., Munger, J. W., Jacob, D. J., Horowitz, L. W., and Goldstein, A. H.: Seasonal variation of the ozone production efficiency per unit NOx at harvard forest, massachusetts, J. Geophys. Res.-Atmos., 101, 12 659-12 666, 1996.
    • Houyoux, M. R. and Vukovich, J. M.: Updates to the sparse matrix operator kernel emissions (smoke) modeling system and integration with models-3, The Emission Inventory: Regional Strategies for the Future, Raleigh, NC, 1999.
    • Hudman, R. C., Jacob, D. J., Turquety, S., Leibensperger, E. M., Murray, L. T., Wu, S., Gilliland, A. B., Avery, M., Bertram, T. H., Brune, W., Cohen, R. C., Dibb, J. E., Flocke, F. M., Fried, A., Holloway, J., Neuman, J. A., Orville, R., Perring, A., Ren, X., Ryerson, T. B., Sachse, G. W., Singh, H. B., Swanson, A., and Wooldridge, P. J.: Surface and lightning sources of nitrogen oxides in the united states: Magnitudes, chemical evolution, and outflow, J. Geophys. Res., 112, D12S05, doi:10.1029/2006JD007912, 2007.
    • Labrador, L. J., von Kuhlmann, R., and Lawrence, M. G.: The effects of lightning-produced NOx and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCHMPIC, Atmos. Chem. Phys., 5, 1815-1834, 2005, http://www.atmos-chem-phys.net/5/1815/2005/.
    • Lefohn, A. S., Oltmans, S. J., Dann, T., and Singh, H. B.: Presentday variability of background ozone in the lower troposphere, J. Geophys. Res.-Atmos., 106, 9945-9958, 2001.
    • Liang, J. Y., Horowitz, L. W., Jacob, D. J., Wang, Y. H., Fiore, A. M., Logan, J. A., Gardner, G. M., and Munger, J. W.: Seasonal budgets of reactive nitrogen species and ozone over the united states, and export fluxes to the global atmosphere, J. Geophys. Res.-Atmos., 103, 13 435-13 450, 1998.
    • Lin, C. Y. C., Jacob, D. J., Munger, J. W., and Fiore, A. M.: Increasing background ozone in surface air over the united states, Geophys. Res. Lett., 27, 3465-3468, 2000.
    • MACTEC: Documentation of the revised 2002 base year, revised 2018, and initial 2009 emission inventories for vistas, Visibility Improvement State and Tribal Association of the Southeast (VISTAS), 2005.
    • Martin, R. V., Sioris, C. E., Chance, K., Ryerson, T. B., Bertram, T. H., Wooldridge, P. J., Cohen, R. C., Neuman, J. A., Swanson, A., and Flocke, F. M.: Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern north america, J. Geophys. Res.-Atmos., 111, D15308, doi:10.1029/2005JD006680, 2006.
    • Martin, R. V., Sauvage, B., Folkins, I., Sioris, C. E., Boone, C., Bernath, P., and Ziemke, J.: Space-based constraints on the production of nitric oxide by lightning, J. Geophys. Res.-Atmos., 112, D09309, doi:10.1029/2006JD007831, 2007.
    • Ott, L. E., Pickering, K. E., Stenchikov, G. L., Huntrieser, H., and Schumann, U.: Effects of lightning NOx production during the 21 July european lightning nitrogen oxides project storm studied with a three-dimensional cloud-scale chemical transport model, J. Geophys. Res.-Atmos., 112, D05307, doi:10.1029/2006JD007365, 2007.
    • Pickering, K. E., Wang, Y. S., Tao, W. K., Price, C., and Muller, J. F.: Vertical distributions of lightning NOx for use in regional and global chemical transport models, J. Geophys. Res.-Atmos., 103, 31 203-31 216, 1998.
    • Pleim, J. E. and Chang, J. S.: A nonlocal closure-model for vertical mixing in the convective boundary-layer, Atmos. Environ., 26, 965-981, 1992.
    • Price, C. and Rind, D.: What determines the cloud-to-ground lightning fraction in thunderstorms, Geophys. Res. Lett., 20, 463- 466, 1993.
    • Price, C., Penner, J., and Prather, M.: NOx from lightning. 1. Global distribution based on lightning physics, J. Geophys. Res.-Atmos., 102, 5929-5941, 1997.
    • Ridley, B. A., Dye, J. E., Walega, J. G., Zheng, J., Grahek, F. E., and Rison, W.: On the production of active nitrogen by thunderstorms over new mexico, J. Geophys. Res.-Atmos., 101, 20 985- 21 005, 1996.
    • Ridley, B. A., Pickering, K. E., and Dye, J. E.: Comments on the parameterization of lightning-produced no in global chemistrytransport models, Atmos. Environ., 39, 6184-6187, 2005.
    • Russell, A. G., Cass, G. R., and Seinfeld, J. H.: On some aspects of nighttime atmospheric chemistry, Environ. Sci. Technol., 20, 1167-1172, 1986.
    • Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 3823-3907, 2007, http://www.atmos-chem-phys.net/7/3823/2007/.
    • Seaman, N. L.: Meteorological modeling for air-quality assessments, Atmos. Environ., 34, 2231-2259, 2000.
    • Stockwell, D. Z., Giannakopoulos, C., Plantevin, P. H., Carver, G. D., Chipperfield, M. P., Law, K. S., Pyle, Y. A., Shallcross, D. E., and Wang, K. Y.: Modelling NOx from lightning and its impact on global chemical fields, Atmos. Environ., 33, 4477-4493, 1999.
    • Tie, X. X., Zhang, R. Y., Brasseur, G., and Lei, W. F.: Global NOx production by lightning, J. Atmos. Chem., 43, 61-74, 2002.
    • Trainer, M., Parrish, D. D., Buhr, M. P., Norton, R. B., Fehsenfeld, F. C., Anlauf, K. G., Bottenheim, J. W., Tang, Y. Z., Wiebe, H. A., Roberts, J. M., Tanner, R. L., Newman, L., Bowersox, V. C., Meagher, J. F., Olszyna, K. J., Rodgers, M. O., Wang, T., Berresheim, H., Demerjian, K. L., and Roychowdhury, U. K.: Correlation of ozone with noy in photochemically aged air, J. Geophys. Res.-Atmos., 98, 2917-2925, 1993.
    • Xiu, A. J. and Pleim, J. E.: Development of a land surface model. Part i: Application in a mesoscale meteorological model, J. Appl. Meteorol., 40, 192-209, 2001.
    • Zhang, R. Y., Sanger, N. T., Orville, R. E., Tie, X. X., Randel, W., and Williams, E. R.: Enhanced NOx by lightning in the upper troposphere and lower stratosphere inferred from the uars global NO2 measurements, Geophys. Res. Lett., 27, 685-688, 2000.
    • Zhang, R. Y., Tie, X. X., and Bond, D. W.: Impacts of anthropogenic and natural NOx sources over the us on tropospheric chemistry, Proceedings Of The National Academy Of Sciences Of The United States Of America, 100, 1505-1509, 2003.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from