LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Montes, D; Añel, JA; Pena, TF; Uhe, P; Wallom, DCH (2017)
Publisher: Copernicus Publications
Journal: Geoscientific Model Development
Types: Article
Subjects: QE1-996.5, Geology
Volunteer or crowd computing is becoming increasingly popular for solving complex research problems from an increasingly diverse range of areas. The majority of these have been built using the Berkeley Open Infrastructure for Network Computing (BOINC) platform, which provides a range of different services to manage all computation aspects of a project. The BOINC system is ideal in those cases where not only does the research community involved need low-cost access to massive computing resources but also where there is a significant public interest in the research being done.

We discuss the way in which cloud services can help BOINC-based projects to deliver results in a fast, on demand manner. This is difficult to achieve using volunteers, and at the same time, using scalable cloud resources for short on demand projects can optimize the use of the available resources. We show how this design can be used as an efficient distributed computing platform within the cloud, and outline new approaches that could open up new possibilities in this field, using Climateprediction.net (http://www.climateprediction.net/) as a case study.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen, M.: Do-it-yourself climate prediction, Nature, 401, 642, doi:10.1038/44266, 1999.
    • Añel, J. A.: The importance of reviewing the code, Commun. ACM, 54, 40-41, doi:10.1145/1941487.1941502, 2011.
    • Añel, J. A., López-Moreno, J. I., Otto, F. E. L., Vicente-Serrano, S., Schaller, N., Massey, N., Buisán, S., and Allen, M. R.: The extreme snow accumulation in the western Spanish Pyrenees during winter and spring 2013, B. Am. Meterol. Soc., 95, S73-S76, 2014.
    • Anderson, D. P.: Boinc: A system for public-resource computing and storage, in: 5th IEEE/ACM International Workshop on Grid Computing, GRID 2004, Pittsburgh, USA, 8 November 2004, IEEE Computer Society Washington, DC, USA, 4-10, doi:10.1109/GRID.2004.14, 2004.
    • AWS: S3 Princing, available at: https://aws.amazon.com/s3/pricing/ (last access: 22 December 2016), 2016a.
    • AWS: AWS Offers Data Egress Discount to Researchers, available at: https://aws.amazon.com/blogs/publicsector/ aws-offers-data-egress-discount-to-researchers/ (last access: 22 December 2016), 2016b.
    • AWS: Glacier, available at: https://aws.amazon.com/glacier/(last access: 22 December 2016), 2016c.
    • Black, M. T., Karoly, D. J., Rosier, S. M., Dean, S. M., King, A. D., Massey, N. R., Sparrow, S. N., Bowery, A., Wallom, D., Jones, R. G., Otto, F. E. L., and Allen, M. R.: The weather@home regional climate modelling project for Australia and New Zealand, Geosci. Model Dev., 9, 3161-3176, doi:10.5194/gmd-9-3161- 2016, 2016.
    • BOINC: Berkeley Open Infrastructure for Network Computing, available at: http://boinc.berkeley.edu/ (last access: 19 June 2014), 2014.
    • Canonical Ltd.: Ubuntu, available at: http://www.ubuntu.com (last access: 19 June 2014), 2014.
    • CPDN: ClimatePrediction.net, http://www.climateprediction.net (last access: 3 November 2015), 2015.
    • Garnaat, M.: boto: A Python interface to Amazon Web Services, available at: http://boto.readthedocs.org/en/latest/, last access: 3 November 2015, 2010.
    • Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147-168, doi:10.1007/s003820050010, 2000.
    • Grinberg, M.: Designing a RESTful API with Python and Flask, available at: http://blog.miguelgrinberg.com/post/ designing-a-restful-api-with-python-and-flask, last access: 3 November 2015, 2013.
    • howtoforge.com: BIND Installation On CentOS, available at: http: //www.howtoforge.com/bind-installation-on-centos, last access: 3 November 2015, 2010.
    • Iosup, A., Ostermann, S., Yigitbasi, M. N., Prodan, R., Fahringer, T., and Epema, D. H.: Performance analysis of cloud computing services for many-tasks scientific computing, IEEE T. Parall. Distr., 22, 931-945, 2011.
    • Massey, N., Jones, R., Otto, F. E. L., Aina, T., Wilson, S., Murphy, J. M., Hassell, D., Yamazaki, Y. H., and Allen, M. R.: weather@home-development and validation of a very large ensemble modelling system for probabilistic event attribution, Q. J. Roy. Meteor. Soc., 141, 1528-1545, doi:10.1002/qj.2455, 2015.
    • Microsoft: Azure Research Awards, available at: https://blogs.msdn.microsoft.com/azure (last access: 19 June 2014), 2014.
    • Montes, D.: climateprediction.net: A Cloudy Approach, Master thesis, High Performance Computing Masters, University of Santiago de Compostela, Spain, 2014.
    • Pope, D. V., Gallani, M. L., Rowntree, P. R., and Stratton, R. A.: The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3, Clim. Dynam., 16, 123-146, 2000.
    • Raicu, I., Foster, I. T., and Zhao, Y.: Many-task computing for grids and supercomputers, in: 2008 Workshop on Many-Task Computing on Grids and Supercomputers, MTAGS 2008, Austin, TX, 17-17 November 2008, IEEE, 11 pp., doi:10.1109/MTAGS.2008.4777912, 2008.
    • Ries, C. B., Schröder, C., and Grout, V.: Approach of a UML profile for Berkeley Open Infrastructure for network computing (BOINC), 2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAEI), Penang, 4-7 December 2011, IEEE, 483-488, doi:10.1109/ICCAIE.2011.6162183, 2011.
    • Schaller, N., Otto, F. E. L., van Oldenborgh, G. J., Massey, N. R., Sparrow, S., and Allen, M. R.: The heavy precipitation event of May-June 2013 in the upper Danube and Elbe basins, B. Am. Meteorol. Soc., 95, S69-S72, 2014.
    • Schaller, N., Kay, A. L., Lamb, R., Massey, N. R., van Oldenborgh, G. J., Otto, F. E., Sparrow, S. N., Vautard, R., Yiou, P., Ashpole, I., Bowery, A., Crooks, S. M., Haustein, K., Huntingford, C., Ingram, W. J., Jones, R. G., Legg, T., Miller, J., Skeggs, J., Wallom, D., Weisheimer, A., Wilson, S., Stott, P. A., and Allen, M. R.: Human influence on climate in the 2014 southern England winter floods and their impacts, Nature Climate Change, 6, 627-634, doi:10.1038/nclimate2927, 2016.
    • Torvalds, L.: Git: free and open source distributed version control system, http://www.git-scm.com, last access: 19 June 2014, 2015,
    • Uhe, P., Otto, F. E. L., Rashid, M. M., and Wallom, D. C. H.: Utilising Amazon Web Services to provide an on demand urgent computing facility for climateprediction.net, in: Proceedings of the 2016 IEEE 12th International Conference on e-Science, IEEE, 1-7, 2016.
    • Zhao, D., Yang, X., Sadooghi, I., Garzoglio, G., Timm, S., and Raicu, I.: High-Performance Storage Support for Scientific Applications on the Cloud, in: ScienceCloud '15 Proceedings of the 6th Workshop on Scientific Cloud Computing, ACM, 33-36, 2015.
  • No related research data.
  • No similar publications.