Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
M. Weigand; A. Kemna (2017)
Publisher: Copernicus Publications
Journal: Biogeosciences
Languages: English
Types: Article
Subjects: Ecology, QH540-549.5, QE1-996.5, QH501-531, Geology, Life
A better understanding of root–soil interactions and associated processes is essential in achieving progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. To date, such methods are still lacking or restricted by technical constraints, in particular the charactization and monitoring of root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which utilizes low-frequency (< 1 kHz)- electrical conduction- and polarization properties in an imaging framework. It is well established that cells and cell clusters exhibit an electrical polarization response in alternating electric-current fields due to electrical double layers which form at cell membranes. This double layer is directly related to the electrical surface properties of the membrane, which in turn are influenced by nutrient dynamics (fluxes and concentrations on both sides of the membranes). Therefore, it can be assumed that the electrical polarization properties of roots are inherently related to ion uptake and translocation processes in the root systems. We hereby propose broadband (mHz to hundreds of Hz) multi-frequency EIT as a non-invasive methodological approach for the monitoring and physiological, i.e., functional, characterization of crop root systems. The approach combines the spatial-resolution capability of an imaging method with the diagnostic potential of electrical-impedance spectroscopy. The capability of multi-frequency EIT to characterize and monitor crop root systems was investigated in a rhizotron laboratory experiment, in which the root system of oilseed plants was monitored in a water–filled rhizotron, that is, in a nutrient-deprived environment. We found a low-frequency polarization response of the root system, which enabled the successful delineation of its spatial extension. The magnitude of the overall polarization response decreased along with the physiological decay of the root system due to the stress situation. Spectral polarization parameters, as derived from a pixel-based Debye decomposition analysis of the multi-frequency imaging results, reveal systematic changes in the spatial and spectral electrical response of the root system. In particular, quantified mean relaxation times (of the order of 10 ms) indicate changes in the length scales on which the polarization processes took place in the root system, as a response to the prolonged induced stress situation. Our results demonstrate that broadband EIT is a capable, non-invasive method to image root system extension as well as to monitor changes associated with the root physiological processes. Given its applicability on both laboratory and field scales, our results suggest an enormous potential of the method for the structural and functional imaging of root systems for various applications. This particularly holds for the field scale, where corresponding methods are highly desired but to date are lacking.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • al Hagrey, S.: Geophysical imaging of root-zone, trunk, and moisture heterogeneity, J. Exp. Bot., 58, 839-854, doi:10.1093/jxb/erl237, 2007.
    • al Hagrey, S. and Petersen, T.: Numerical and experimental mapping of small root zones using optimized surface and borehole resistivity tomography, Geophysics, 76, G25-G35, doi:10.1190/1.3545067, 2011.
    • Alumbaugh, D. and Newman, G.: Image appraisal for 2-D and 3-D electromagnetic inversion, Geophysics, 65, 1455-1467, doi:10.1190/1.1444834, 2000.
    • Amato, M., Basso, B., Celano, G., Bitella, G., Morelli, G., and Rossi, R.: In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging, Tree Physiol., 28, 1441- 1448, doi:10.1093/treephys/28.10.1441, 2008.
    • Amato, M., Bitella, G., Rossi, R., Gómez, J. A., Lovelli, S., and Gomes, J. J. F.: Multi-electrode 3D resistivity imaging of alfalfa root zone, Eur. J. Agron., 31, 213-222, doi:10.1016/j.eja.2009.08.005, 2009.
    • Anderson, S. and Hopmans, J. (Eds.): Soil-water-root Processes: Advances in Tomography and Imaging, Soil Sci. Soc. Am., doi:10.2136/sssaspecpub61, 2013.
    • Anderson, W. and Higinbotham, N.: Electrical resistances of corn root segments, Plant Physiol., 57, 137-141, doi:10.1104/pp.57.2.137, 1976.
    • Aubrecht, L., Staneˇk, Z., and Koller, J.: Electrical measurement of the absorption surfaces of tree roots by the earth impedance method: 1. Theory, Tree Physiol., 26, 1105-1112, doi:10.1093/treephys/26.9.1105, 2006.
    • Aulen, M. and Shipley, B.: Non-destructive estimation of root mass using electrical capacitance on ten herbaceous species, Plant Soil, 355, 41-49, doi:10.1007/s11104-011-1077-3, 2012.
    • Barsoukov, E. and Macdonald, J. (Eds.): Impedance spectroscopy: theory, experiment, and applications, Wiley-Interscience, doi:10.1002/0471716243, 2005.
    • Bayford, R.: Bioimpedance tomography (electrical impedance tomography), Annual Reviews Biomedical Engineering, 8, 63-91, doi:10.1146/annurev.bioeng.8.061505.095716, 2006.
    • Beff, L., Günther, T., Vandoorne, B., Couvreur, V., and Javaux, M.: Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography, Hydrol. Earth Syst. Sci., 17, 595-609, doi:10.5194/hess-17-595-2013, 2013.
    • Benlloch-González, M., Fournier, J., and Benlloch, M.: KC deprivation induces xylem water and KC transport in sunflower: evidence for a co-ordinated control, J. Exp. Bot., 61, 157-164, doi:10.1093/jxb/erp288, 2010.
    • Binley, A. and Kemna, A.: DC resistivity and induced polarization methods, in: Hydrogeophysics, edited by: Rubin, Y. and Hubbard, S. S., Springer, the Netherlands, 129-156, doi:10.1007/1- 4020-3102-5_5, 2005.
    • Binley, A., Slater, L., Fukes, M., and Cassiani, G.: Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone, Water Resour. Res., 41, 1- 13, doi:10.1029/2005WR004202, 2005.
    • Boaga, J., Rossi, M., and Cassiani, G.: Monitoring soil-plant interactions in an apple orchard using 3D electrical resistivity tomography, Procedia Environmental Sciences, 19, 394-402, doi:10.1016/j.proenv.2013.06.045, 2013.
    • Bücker, M. and Hördt, A.: Analytical modelling of membrane polarization with explicit parametrization of pore radii and the electrical double layer, Geophys. J. Int., 194, 804-813, doi:10.1093/gji/ggt136, 2013.
    • Cao, Y., Repo, T., Silvennoinen, R., Lehto, T., and Pelkonen, P.: An appraisal of the electrical resistance method for assessing root surface area, J. Exp. Bot., 61, 2491-2497, doi:10.1093/jxb/erq078, 2010.
    • Cao, Y., Repo, T., Silvennoinen, R., Lehto, T., and Pelkonen, P.: Analysis of the willow root system by electrical impedance spectroscopy, J. Exp. Bot., 62, 351-358, doi:10.1093/jxb/erq276, 2011.
    • Cˇ ermák, J., Ulrich, R., Staneˇk, Z., Koller, J., and Aubrecht, L.: Electrical measurement of tree root absorbing surfaces by the earth impedance method: 2. Verification based on allometric relationships and root severing experiments, Tree Physiol., 26, 1113- 1121, doi:10.1093/treephys/26.9.1113, 2006.
    • Chloupek, O.: The relationship between electric capacitance and some other parameters of plant roots, Biol. Plantarum, 14, 227- 230, doi:10.1007/BF02921255, 1972.
    • Chloupek, O.: Die Bewertung des Wurzelsystems von Senfpflanzen auf Grund der dielektrischen Eigenschaften und mit Rücksicht auf den Endertrag, Biol. Plantarum, 18, 44-49, doi:10.1007/BF02922333, 1976.
    • Claassen, N. and Barber, S.: A method for characterizing the relation between nutrient concentration and flux into roots of intact plants, Plant Physiol., 54, 564-568, doi:10.1104/pp.54.4.564, 1974.
    • Clarkson, D., Carvajal, M., Henzler, T., Waterhouse, R., Smyth, A., Cooke, D., and Steudle, E.: Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress, J. Exp. Bot., 51, 61-70, doi:10.1093/jexbot/51.342.61, 2000.
    • Cseresnyés, I., Tünde, T., Végh, K., Anton, A., and Rajkai, K.: Electrical impedance and capacitance method: A new approach for detection of functional aspects of arbuscular mycorrhizal colonization in maize, European J. Soil Biol., 54, 25-31, doi:10.1016/j.ejsobi.2012.11.001, 2013.
    • Daily, W., Ramirez, A., Binley, A., and LaBrecque, D.: Electrical resistance tomography - theory and practice, in: NearSurface Geophysics, edited by: Butler, D., Vol. 154, chap. 17, Society of Exploration Geophysicists, Tulsa, OK, 525-550, doi:10.1190/1.9781560801719.ch17, 2005.
    • Dalton, F.: In-situ root extent measurements by electrical capacitance methods, Plant Soil, 173, 157-165, doi:10.1007/BF00155527, 1995.
    • Delhon, P., Gojon, A., Tillard, P., and Passama, L.: Diurnal regulation of NO3 uptake in soybean plants I. Changes in NO3 influx, efflux, and N utilization in the plant during the day/night cycle, J. Exp. Bot., 46, 1585-1594, doi:10.1093/jxb/46.10.1585, 1995.
    • Dietrich, R., Bengough, A., Jones, H., and White, P.: Can root electrical capacitance be used to predict root mass in soil?, Ann. Bot., 112, 457-464, doi:10.1093/aob/mct044, 2013.
    • Dukhin, S. S. and Shilov, V. N.: Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes, Wiley, New York, 1974.
    • Dunbabin, V., Postma, J., Schnepf, A., Pagès, L., Javaux, M., Wu, L., Leitner, D., Chen, Y., Rengel, Z., and Diggle, A.: Modelling root-soil interactions using three-dimensional models of root growth, architecture and function, Plant Soil, 372, 93-124, doi:10.1007/s11104-013-1769-y, 2013.
    • Dvorˇák, M., Cˇernohorská, J., and Janácˇek, K.: Characteristics of current passage through plant tissue, Biol. Plantarum, 23, 306- 310, doi:10.1007/BF02895374, 1981.
    • Ellis, T., Murray, W., and Kavalieris, L.: Electrical capacitance of bean (Vicia faba) root systems was related to tissue density - a test for the Dalton Model, Plant Soil, 366, 575-584, doi:10.1007/s11104-012-1424-z, 2013.
    • Fixman, M.: Charged Macromolecules in External Fields. 2. Preliminary Remarks on the Cylinder, Macromolecules, 13, 711- 716, doi:10.1021/ma60075a043, 1980.
    • Flores Orozco, A., Kemna, A., Oberdörster, C., Zschornack, L., Leven, C., Dietrich, P., and Weiss, H.: Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging, J. Contam. Hydrol., 136, 131-144, doi:10.1016/j.jconhyd.2012.06.001, 2012a.
    • Flores Orozco, A., Kemna, A., and Zimmermann, E.: Data error quantification in spectral induced polarization imaging, Geophysics, 77, E227-E237, doi:10.1190/geo2010-0194.1, 2012b.
    • Flores Orozco, A., Williams, K., and Kemna, A.: Time-lapse spectral induced polarization imaging of stimulated uranium bioremediation, Near Surf. Geophys., 11, 531-544, doi:10.3997/1873-0604.2013020, 2013.
    • Friedel, S.: Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach, Geophys. J. Int., 153, 305-316, doi:10.1046/j.1365-246X.2003.01890.x, 2003.
    • Gregory, P., Hutchison, D., Read, D., Jenneson, P., Gilboy, W., and Morton, E.: Non-invasive imaging of roots with high resolution X-ray micro-tomography, in: Roots: The Dynamic Interface between Plants and the Earth, Springer, 351-359, doi:10.1023/A:1026179919689, 2003.
    • Günther, T. and Martin, T.: Spectral two-dimensional inversion of frequency-domain induced polarization data from a mining slag heap, J. Appl. Geophys., 135, 436-448, doi:10.1016/j.jappgeo.2016.01.008, 2016.
    • Heege, H.: Precision in Crop Farming: Site Specific Concepts and Sensing Methods: Applications and Results, Springer Science & Business Media, Springer, the Netherlands, 2013.
    • Herˇmanská, A., Strˇeda, T., and Chloupek, O.: Improved wheat grain yield by a new method of root selection, Agron. Sustain. Dev., 35, 195-202, doi:10.1007/s13593-014-0227-4, 2015.
    • Hose, E., Clarkson, D., Steudle, E., Schreiber, L., and Hartung, W.: The exodermis: a variable apoplastic barrier, J. Exp. Bot., 52, 2245-2264, doi:10.1093/jexbot/52.365.2245, 2001.
    • Huisman, J., Zimmermann, E., Esser, O., Haegel, F., Treichel, A., and Vereecken, H.: Evaluation of a novel correction procedure to remove electrode impedance effects from broadband SIP measurements, J. Appl. Geophys., 135, 466-473, doi:10.1016/j.jappgeo.2015.11.008, 2015.
    • Javaux, M., Couvreur, V., Vanderborght, J., and Vereecken, H.: Root water uptake: From three-dimensional biophysical processes to macroscopic modeling approaches, Vadose Zone J., 12, 1-16, doi:10.2136/vzj2013.02.0042, 2013.
    • Johnson, T., Slater, L., Ntarlagiannis, D., Day-Lewis, F., and Elwaseif, M.: Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient threedimensional electrical resistivity changes, Water Resour. Res., 48, W07506, doi:10.1029/2012WR011893, 2012.
    • Kelter, M., Huisman, J., Zimmermann, E., Kemna, A., and Vereecken, H.: Quantitative imaging of spectral electrical properties of variably saturated soil columns, J. Appl. Geophys., 123, 333-344, doi:10.1016/j.jappgeo.2015.09.001, 2015.
    • Kemna, A.: Tomographic inversion of complex resistivity - theory and application, PhD thesis, Ruhr-Universität Bochum, doi:10.1111/1365-2478.12013, 2000.
    • Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A., Slater, L., Williams, K., Flores Orozco, A., Haegel, F., Hoerdt, A., Kruschwitz, S., Leroux, V., Titov, K., and Zimermann, E.: An overview of the spectral induced polarization method for near-surface applications, Near Surf. Geophys., 10, 453-468, doi:10.3997/1873-0604.2012027, 2012.
    • Kemna, A., Huisman, J., Zimmermann, E., Martin, R., Zhao, Y., Treichel, A., Flores Orozco, A., and Fechner, T.: Broadband electrical impedance tomography for subsurface characterization using improved corrections of electromagnetic coupling and spectral regularization, in: Tomography of the Earth's Crust: From Geophysical Sounding to Real-Time Monitoring, Springer, 1-20, doi:10.1007/978-3-319-04205-3_1, 2014.
    • Kinraide, T.: Use of a Gouy-Chapman-Stern model for membranesurface electrical potential to interpret some features of mineral rhizotoxicity, Plant Physiol., 106, 1583-1592, 1994.
    • Kinraide, T. and Wang, P.: The surface charge density of plant cell membranes ( ): an attempt to resolve conflicting values for intrinsic , J. Exp. Bot., 61, 2507-2518, doi:10.1093/jxb/erq082, 2010.
    • Kinraide, T., Yermiyahu, U., and Rytwo, G.: Computation of surface electrical potentials of plant cell membranes correspondence to published zeta potentials from diverse plant sources, Plant Physiol., 118, 505-512, doi:10.1104/pp.118.2.505, 1998.
    • Kormanek, M., Gła¸b, T., and Klimek-Kopyra, A.: Modification of the tree root electrical capacitance method under laboratory conditions, Tree Physiol., 36, 121-127, doi:10.1093/treephys/tpv088, 2015.
    • Kruschwitz, S., Binley, A., Lesmes, D., and Elshenawy, A.: Textural controls on low-frequency electrical spectra of porous media, Geophysics, 75, WA113, doi:10.1190/1.3479835, 2010.
    • Kyle, A., Chan, C., and Minchinton, A.: Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy, Biophys. J., 76, 2640-2648, doi:10.1016/S0006- 3495(99)77416-3, 1999.
    • LaBrecque, D. and Ward, S.: Two-dimensional cross-borehole resistivity model fitting, Geotechnical and Environmental Geophysics, 1, 51-57, 1990.
    • LaBrecque, D., Ramirez, A., Daily, W., Binley, A., and Schima, S.: ERT monitoring of environmental remediation processes, Meas. Sci. Technol., 7, 375-383, doi:10.1088/0957-0233/7/3/019, 1996.
    • Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Ghorbani, A.: Complex conductivity of water-saturated packs of glass beads, J. Colloid Interf. Sci., 321, 103-117, doi:10.1016/j.jcis.2007.12.031, 2008.
    • Lesmes, D. and Frye, K.: Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone, J. Geophys. Res., 106, 4079-4090, doi:10.1029/2000JB900392, 2001.
    • Li, Z., Liu, Y., Zheng, Y., and Xu, R.: Zeta potential at the root surfaces of rice characterized by streaming potential measurements, Plant Soil, 386, 237-250, doi:10.1007/s11104-014-2259- 6, 2015.
    • Loke, M., Chambers, J., Rucker, D., Kuras, O., and Wilkinson, P.: Recent developments in the direct-current geoelectrical imaging method, J. Appl. Geophys., 95, 135-156, doi:10.1016/j.jappgeo.2013.02.017, 2013.
    • Lyklema, J.: Fundamentals of interface and colloid science: solidliquid interfaces, Vol. 2, Academic press, London, UK, 2005.
    • Lyklema, J., Dukhin, S., and Shilov, V.: The relaxation of the double layer around colloidal particles and the low-frequency dielectric dispersion: Part I. Theoretical considerations, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 143, 1-21, doi:10.1016/S0022-0728(83)80251-4, 1983.
    • Mancuso, S.: Measuring roots: an updated approach, Springer Science & Business Media, doi:10.1007/978-3-642-22067-8, Springer, Heidelberg, Dordrecht, London, New York, 2012.
    • Martin, T. and Günther, T.: Complex resistivity tomography (CRT) for fungus detection on standing oak trees, Eur. J. Forest Res., 132, 765-776, doi:10.1007/s10342-013-0711-4, 2013.
    • Martínez-Ballesta, M., Rodríguez-Hernández, M., Alcaraz-López, C., Mota-Cadenas, C., Muries, B., and Carvajal, M.: Plant hydraulic conductivity: The aquaporins contribution, Hydraulic conductivity - issues, determination and applications, Rijeka: In Tech, 103-21, doi:10.5772/18580, 2011.
    • Metzner, R., Eggert, A., van Dusschoten, D., Pflugfelder, D., Gerth, S., Schurr, U., Uhlmann, N., and Jahnke, S.: Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification, Plant Meth., 11, 17, doi:10.1186/s13007-015-0060-z, 2015.
    • Nordsiek, S. and Weller, A.: A new approach to fitting induced-polarization spectra, Geophysics, 73, F235-F245, doi:10.1190/1.2987412, 2008.
    • Ozier-Lafontaine, H. and Bajazet, T.: Analysis of root growth by impedance spectroscopy (EIS), Plant Soil, 277, 299-313, doi:10.1007/s11104-005-7531-3, 2005.
    • Pelton, W., Ward, S., Hallof, P., Sill, W., and Nelson, P.: Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophysics, 43, 588-609, doi:10.1190/1.1440839, 1978.
    • Pierret, A., Doussan, C., Garrigues, E., and Mc Kirby, J.: Observing plant roots in their environment: current imaging options and specific contribution of two-dimensional approaches, Agronomie, 23, 471-479, doi:10.1051/agro:2003019, 2003.
    • Prodan, C. and Prodan, E.: The dielectric behaviour of living cell suspensions, J. Phys. D, 32, 335-343, 1999.
    • Prodan, E., Prodan, C., and Miller Jr., J.: The dielectric response of spherical live cells in suspension: an analytic solution, Biophys. J., 95, 4174-4182, doi:10.1529/biophysj.108.137042, 2008.
    • Razilov, I. and Dukhin, S.: Simultaneous influence of concentration polarization of the diffuse layer and polarization of the Stern layer according to the mechanism of bound counterions at arbitrary magnitudes of the relaxation parameter, Colloid J. Russ. Acad., 57, 364-371, 1995.
    • Repo, T., Cao, Y., Silvennoinen, R., and Ozier-Lafontaine, H.: Electrical impedance spectroscopy and roots, in: Measuring Roots, edited by: Mancuso, S., Springer, 25-49, doi:10.1007/978-3- 642-22067-8_2, 2012.
    • Repo, T., Korhonen, A., Laukkanen, M., Lehto, T., and Silvennoinen, R.: Detecting mycorrhizal colonisation in Scots pine roots using electrical impedance spectra, Biosyst. Eng., 121, 139-149, doi:10.1016/j.biosystemseng.2014.02.014, 2014.
    • Revil, A. and Florsch, N.: Determination of permeability from spectral induced polarization in granular media, Geophys. J. Int., 181, 1480-1498, doi:10.1111/j.1365-246X.2010.04573.x, 2010.
    • Revil, A., Karaoulis, M., Johnson, T., and Kemna, A.: Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology, Hydrogeol. J., 20, 617- 658, doi:10.1007/s10040-011-0819-x, 2012.
    • Revil, A., Florsch, N., and Camerlynck, C.: Spectral induced polarization porosimetry, Geophys. J. Int., 198, 1016-1033, doi:10.1093/gji/ggu180, 2014.
    • Rossi, R., Amato, M., Bitella, G., Bochicchio, R., Ferreira Gomes, J., Lovelli, S., Martorella, E., and Favale, P.: Electrical resistivity tomography as a non-destructive method for mapping root biomass in an orchard, Eur. J. Soil Sci., 62, 206-215, doi:10.1111/j.1365-2389.2010.01329.x, 2011.
    • Schraut, D., Heilmeier, H., and Hartung, W.: Radial transport of water and abscisic acid (ABA) in roots of Zea mays under conditions of nutrient deficiency, J. Exp. Bot., 56, 879-886, doi:10.1093/jxb/eri080, 2005.
    • Schwan, H.: Electrical Properties of Tissue and Cell Suspensions, Vol. 5 of Advances in Biological and Medical Physics, Elsevier, 147-209, doi:10.1016/B978-1-4832-3111-2.50008-0, 1957.
    • Schwarz, G.: A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution, J. Phys. Chem., 66, 2636-2642, doi:10.1021/j100818a067, 1962.
    • Singha, K., Day-Lewis, F., Johnson, T., and Slater, L.: Advances in interpretation of subsurface processes with timelapse electrical imaging, Hydrol. Process., 29, 1549-1576, doi:10.1002/hyp.10280, 2014.
    • Srayeddin, I. and Doussan, C.: Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography, Plant Soil, 319, 185-207, doi:10.1007/s11104-008-9860-5, 2009.
    • Tarasov, A. and Titov, K.: On the use of the Cole-Cole equations in spectral induced polarization, Geophys. J. Int., 195, 352-356, doi:10.1093/gji/ggt251, 2013.
    • Tinker, P. and Nye, P.: Solute movement in the rhizosphere, Oxford University Press, Inc., New York, doi:10.1046/j.1365- 2389.2001.00418-2.x, 2000.
    • Titov, K., Komarov, V., Tarasov, V., and Levitski, A.: Theoretical and experimental study of time domain-induced polarization in water-saturated sands, J. Appl. Geophys., 50, 417-433, doi:10.1016/S0926-9851(02)00168-4, 2002.
    • Uhlmann, D. and Hakim, R.: Derivation of distribution functions from relaxation data, J. Phys. Chem. Solids, 32, 2652-2655, doi:10.1016/S0022-3697(71)80114-2, 1971.
    • Urban, J., Bequet, R., and Mainiero, R.: Assessing the applicability of the earth impedance method for in situ studies of tree root systems, J. Exp. Bot., 62, 1857-1869, doi:10.1093/jxb/erq370, 2011.
    • Walker, J.: Electrical AC resistance and capacitance of Zea mays L, Plant Soil, 23, 270-274, doi:10.1007/BF01358354, 1965.
    • Wang, P., Zhou, D.-M., Li, L.-Z., and Li, D.-D.: What role does cell membrane surface potential play in ion-plant interactions, Plant Signaling & Behavior, 4, 42-43, doi:10.4161/psb.4.1.7270, 2009.
    • Wang, P., Kinraide, T., Zhou, D., K., P. M., and Peijnenburg, W.: Plasma membrane surface potential: dual effects upon ion uptake and toxicity, Plant Physiol., 155, 808-820, doi:10.1104/pp.110.165985, 2011.
    • Wang, Y.-M., Kinraide, T., Wang, P., Zhou, D., and Hao, X.: Modeling rhizotoxicity and uptake of Zn and Co singly and in binary mixture in wheat in terms of the cell membrane surface electrical potential, Environ. Sci. Technol., 47, 2831-2838, doi:10.1021/es3022107, 2013.
    • Weigand, M. and Kemna, A.: Debye decomposition of time-lapse spectral induced polarisation data, Comput. Geosci., 86, 34-45, doi:10.1016/j.cageo.2015.09.021, 2016.
    • Weigand, M. and Kemna, A.: Data and results for manuscript “Multi-frequency electrical impedance tomography as a noninvasive tool to characterize and monitor crop root systems”, Data set, Zenodo, doi:10.5281/zenodo.260087, 2017.
    • Whalley, W., Binley, A., Watts, C., Shanahan, P., Dodd, I., Ober, E., Ashton, R., Webster, C., White, R., and Hawkesford, M. J.: Methods to estimate changes in soil water for phenotyping root activity in the field, Plant Soil, 1-16, doi:10.1007/s11104-016- 3161-1, 2017.
    • Willatt, S., Struss, R., and Taylor, H.: In situ root studies using neutron radiography, Agron. J., 70, 581-586, doi:10.2134/agronj1978.00021962007000040016x, 1978.
    • Zanetti, C., Weller, A., Vennetier, M., and Mériaux, P.: Detection of buried tree root samples by using geoelectrical measurements: a laboratory experiment, Plant Soil, 339, 273-283, doi:10.1007/s11104-010-0574-0, 2011.
    • Zhao, Y., Zimmermann, E., Huisman, J., Treichel, A., Wolters, B., van Waasen, S., and Kemna, A.: Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects, Meas. Sci. Technol., 24, 085005, doi:10.1088/0957-0233/24/8/085005, 2013.
    • Zimmermann, E., Kemna, A., Berwix, J., Glaas, W., and Vereecken, H.: EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments, Meas. Sci. Technol., 19, 094010, doi:10.1088/0957- 0233/19/9/094010, 2008.
  • No similar publications.

Share - Bookmark

Cite this article