Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tarquis, Ana M.; Castellanos, María Teresa; Cartagena, Maria Carmen; Arce, Augusto; Ribas, Francisco; Cabello, María Jesús; Herrera, Juan López; Bird, Nigel R. A. (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809

Classified by OpenAIRE into

mesheuropmc: food and beverages
In this study, we use multifractal analysis, through generalized dimensions (Dq) and the relative entropy (E(δ)), to investigate the residual effects of fertigation treatments applied to a previous crop on wheat and grain biomass and nitrogen content. The wheat crop covered nine subplots from a previous experiment on melon responses to fertigation. Each subplot had previously received a different level of applied nitrogen (Napp), and the plants from the previous melon crop had already taken up part of it. Many factors affect these variables, causing them to vary at different scales and creating a non-uniform distribution along a transect. Correlations between the four variables and Napp showed high volatility, although the relationships between grain weight and wheat weight versus wheat nitrogen content presented a statistically significant logarithmic trend.

The Dq values were used to study the relation between scales and E(δ) values, and their increments between scales were used to identify the scale at which the variable had the maximum structure and were compared with the scaling behaviour of the Napp. E(δ) is particularly appropriate for this purpose because it does not require any prior assumptions regarding the structure of the data and is easy to calculate.

The four variables studied presented a weak multifractal character with a low variation in Dq values, although there was a distinction between variables related to nitrogen content and weight. On the other hand, the E(δ) and the increments in E(δ) help us to detect changes in the scaling behaviour of all the variables studied. In this respect, the results showed that the Napp through fertigation dominated the wheat and grain biomass response, as well as the nitrogen content of the whole plant; surprisingly, the grain nitrogen content did not show the same structure as Napp. At the same time, there was a noticeable structure variation in all the variables, except wheat nitrogen content, at smaller scales that could correspond to the previous cropping root arrangement due to uptake of the Napp.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, 3rd Edn., 300 pp., 2002.
    • Association of Official Analytical Chemists: Official Methods of Analysis, edited by: Helrich, K., AOAC Arlington VA, 1990.
    • Barraclough, P. B., Howarth, J. R., Jones, J., Lopez-Bellido, R., Parmar, S., Shepherd, C. E., and Hawkesford, M. J.: Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement, Eur. J. Agron., 33, 1-11, 2010.
    • De Bartolo, S., Otten, W., Cheng, Q., and Tarquis, A. M.: Preface “Modeling soil system: complexity under your feet”, Biogeosciences, 8, 3139-3142, doi:10.5194/bg-8-3139-2011, 2011.
    • Bird, N., Díaz, M. C., Saa, A., and Tarquis, A. M.: A review of fractal and multifractal analysis of soil pore-scale images, J. Hydrol., 322, 211-219, 2006.
    • Bundy, L. G. and Andraski, T. W.: Recovery of fertilizer nitrogen in crop residues and cover crops on an irrigated sandy soil, Soil Sci. Soc. Am. J., 69, 640-648, 2005.
    • Burrough, P. A., Bouma, J., and Yates, S. R.: The state of the art in pedometrics, Geoderma, 62, 311-326, 1994.
    • Caniego, F. J., Espejo, R., Martín, M. A., and San José, F.: Multifractal scaling of soil spatial variability, Ecol. Modell., 182, 291- 303, 2005.
    • Castellanos, M. T., Cartagena, M. C., Arce, A., Ribas, F., Cabello, M. J., and Tarquis, A. M.: Efficiency Indexes for melon crop optimization, Agron. J., 102, 716-722, 2010.
    • Doorenbos, J. and Pruitt, W. O.: Las necesidades de agua de los cultivos, Estudios F.A.O. Riego y Drenaje, 24. Edn., FAO (Roma), 194 pp., 1977.
    • Evertsz, C. J. G. and Mandelbrot, B. B.: Multifractal Measures (Appendix B), in: Chaos and fractals, edited by: Peitgen, H. O., Jurgens, H., and Saupe, D., Springer-Verlag, New York, 922-953, 1992.
    • Feder, J.: Fractals, Plenum Press, New York, 1989.
    • Goovaerts, P.: Geostatistics for natural resources evaluation, Oxford Univ. Press, New York, 1997.
    • Goovaerts, P.: Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties, Biol. Fertil. Soils, 27, 315-334, 1998.
    • Hawkesford, M. J.: Reducing the reliance on nitrogen fertilizer for wheat production, J. Cereal Sci., 59, 276-283, 2014.
    • Hentschel, H. G. E. and Procaccia, I.: The Infinite number of generalized dimensions of fractals and strange attractors, Physica D, 8, 435-444, 1983.
    • Karlen, D. L., Kramer, L. A., and Logsdon, S. D.: Field-scale nitrogen balances associated with long-term continuous continuous corn production, Agron. J., 90, 644-650, 1998.
    • Kravchenko, A. N., Omonode, R., Bollero, G. A., and Bullock, D. G.: Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity, Soil Sci. Soc. Am. J., 66, 235-243, 2002.
    • Kravchenko, A. N., Thelen, K. D., Bullock, D. G., and Miller, N. R.: Relationship among crop grain yield, topography, and soil electrical conductivity studied with cross-correlograms, Agron. J., 95, 1132-1139, 2003.
    • Lark, R. M. and Webster, R.: Analysis and elucidation of soil variation using wavelets, Eur. J. Soil Sci., 50, 185-206, 1999.
    • Lark, R. M., Kaffka, S. R., and Corwin, D. L.: Multiresolution analysis of data on electrical conductivity of soil using wavelets, J. Hydrol., 272, 276-290, 2003.
    • Lark, R. M., Milne, A. E., Addiscott, T. M., Goulding, K. W. T., Webster, C. P., and O'Flaherty, S.: Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets, Eur. J. Soil Sci., 55, 611-627, 2004.
    • Logsdon, S. D., Perfect, E., and Tarquis, A. M.: Multiscale Soil Investigations: Physical Concepts and Mathematical Techniques, Vadose Zone J., 7, 453-455, 2008.
    • López de Herrera, J., Herrero Tejedor, T., Saa-Requejo, A., and Tarquis, A. M.: Effects of tillage on variability in soil penetration resistance in an olive orchard, Soil Res., 54, 134-143, 2016.
    • Mandelbrot, B. B.: The fractal geometry of nature, W.H. Freeman, New York, 1982
    • McCracken, D. V., Corak, S. J., Smith, M. S., Frye, W. W., and Blevins, R. L.: Residual effects of nitrogen fertilization and winter cover cropping on nitrogen availability, Soil Sci. Soc. Am. J., 53, 1459-1464, 1989.
    • Milne, A. E., Castellanos, M. T., Cartagena, M. C., Tarquis, A. M., and Lark, R. M.: Investigating the effect of previous treatments on wheat biomass over multiple spatial frequencies, Biogeosciences, 7, 2739-2747, doi:10.5194/bg-7-2739-2010, 2010.
    • Percival, D. B. and Walden, A. T.: Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK, 2000.
    • Ribas, F., Cabello, M. J., and Moreno, M. M.: Necesidades de riego del melón y respuesta del cultivo a riegos diferenciales en la provincia de Ciudad Real (Castilla-La Mancha), XIII Jornadas Técnicas sobre Riegos (Tenerife), 12-20, 1995.
    • Rincón, L. and Giménez, M.: Fertirrigación por goteo en melón, Fertilización, 105, 55-56, 1989.
    • Ruffo, M. L., Bullock, D. G., and Bollero, G. A.: Soybean yield as affected by biomass and nitrogen uptake of cereal rye in winter cover crop rotations, Agron. J., 96, 800-805, 2004.
    • Soil Survey Staff: Keys to Soil Taxonomy, 11th Edn. USDA-Natural Resources Conservation Service, US Gov. Printing Office, Washington, USA, 2010.
    • Tarquis, A. M., Bird, N. R., Whitmore, A. P., Cartagena, M. C., and Pachepsky, Y.: Multiscale analysis of soil transect data, Vadose Zone J., 7, 563-569, 2008.
    • Thompson, T. L. and Doerge, T. A.: Nitrogen and water interactions in subsurface trickle-irrigated leaf lettuce, II., Agronomic, economic, and environmental outcomes, Soil Sci. Soc. Am. J., 64, 412-418, 1996.
    • Vereecken, H., Kasteel, R., Vanderborght, J., and Harter, T.: Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: A review, Vadose Zone J., 6, 1-28, 2007.
    • Whitcher, B. J.: Assessing nonstationary time series using wavelets, PhD diss. Univ. of Washington, Seattle (Diss. Abstr. 9907961), 1998.
    • Zeleke, T. B. and Si, B. C.: Characterizing scale-dependent spatial relationships between soil properties using multifractal techniques, Geoderma, 134, 440-452, 2006.
    • Zeleke, T. B. and Si, B. C.: Scaling properties of topographic indices and crop yield: Multifractal and joint multifractal approaches, Agron J., 96, 1082-1090, 2004.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article