LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Skinner, L. C. (2006)
Languages: English
Types: Article
Subjects: sub-01
Given the magnitude and dynamism of the deep marine carbon reservoir, it is almost certain that past glacial – interglacial fluctuations in atmospheric CO2 have relied at least in part on changes in the carbon storage capacity of the deep sea. To date, physical ocean circulation mechanisms that have been proposed as viable explanations for glacial – interglacial CO2 change have focussed almost exclusively on dynamical or kinetic processes. Here, a simple mechanism is proposed for increasing the carbon storage capacity of the deep sea that operates via changes in the volume of southern-sourced deep-water filling the ocean basins, as dictated by the hypsometry of the ocean floor. It is proposed that a water-mass that occupies more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. Hence by filling this interval with southern-sourced deep-water (enriched in dissolved CO2 due to its particular mode of formation) the amount of carbon sequestered in the deep sea may be greatly increased. A simple box-model is used to test this hypothesis, and to investigate its implications. It is suggested that up to 70% of the observed glacial – interglacial CO2 change might be explained by the replacement of northern-sourced deep-water below 2.5 km water depth by its southern counterpart. Most importantly, it is found that an increase in the volume of southern-sourced deep-water allows glacial CO2 levels to be simulated easily with only modest changes in Southern Ocean biological export or overturning. If incorporated into the list of contributing factors to marine carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacial – interglacial CO2 change.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Archer, D., Eshel, G., Winguth, A., Broecker, W. S., Pierrehumbert, R., Tobis, M., and Jacob, R.: Atmospheric pCO2 sensitivity to the bioloical pump in the ocean, Global Biochem. Cycles, 14, 1219-1230, 2000a.
    • Archer, D. and Maier-Reimer, E.: E ffect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature, 367, 260-263, 1994.
    • Archer, D., Winguth, A., Lea, D. W., and Mahowald, N.: What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38, 159-189, 2000b.
    • Bard, E.: Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications, Paleoceanography, 3, 635-645, 1988.
    • Boyle, E.: Cadmium and d13C paleochemical ocean distributions during the Stage 2 glacial maximum, Ann. Rev. Earth Planet. Sci., 20, 245-287, 1992.
    • Boyle, E. A.: The role of vertical fractionation in controlling late Quaternary atmospheric carbon dioxide, J. Geophys. Res., 93, 15 701-15 714, 1988.
    • 5 Brix, H. and Gerdes, R.: North Atlantic Deep Water and Antarctic Bottom Water: Their interaction and influence on the variability of the global ocean circulation, J. Geophys. Res., 108(C2), doi:10.1029-2002JC0021335, 2003.
    • Broecker, W.: How strong is the Harvardton-Bear constraint?, Global Biogeochem. Cycles, 13, 817-820, 1999.
    • 10 Broecker, W. S.: Glacial to interglacial changes in ocean chemistry, Progress in Oceanography, 11, 151-197, 1982a.
    • Broecker, W. S.: Ocean chemistry during glacial time, Geochim. Cosomochim. Acta, 46, 1698- 1705, 1982b.
    • Broecker, W. S. and Peng, T.-H.: The cause of the glacial to interglacial atmospheric CO2 15 change: a polar alkalinity hypothesis, Global Biogeochem. Cycles, 3, 215-239, 1989.
    • Chester, R.: Marine Geochemistry, Blackwell, Oxford, 2003.
    • Phys. Oceanogr., 19, 1730-1752, 1989.
    • Curry, W. B., Duplessy, J. C., Labeyrie, L. D., and Shackleton, N. J.: Changes in the distri20 bution of d13C of deep water sigma-CO2 between the last glaciation and the Holocene, Paleoceanography, 3, 317-341, 1988.
    • Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the distribution of d13C of Sigma-CO2 in the western Atlantic Ocean, Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021, 2005.
    • 25 Duplessy, J.-C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D., and Kallel, N.: Deep water source variations during the last climatic cycle and their impact on global deep water circulation, Paleoceanography, 3, 343-360, 1988.
    • Ganachaud, A. and Wunsch, C.: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data, Nature, 408, 453-457, 2000.
    • 30 Gildor, H. and Tziperman, E.: Physical mechanisms behind biogeochemical glacial-interglacial CO2variations, Geophys. Res. Lett., 28, 2421-2424, 2001.
    • Hughes, T. M. C. and Weaver, A. J.: Multiple Equilibria of an Asymmetric Two-Basin Ocean Model, J. Phys. Oceanogr., 28, 619-637, 1994.
    • Karsten, R. H. and Marshall, J.: Testing theories of the vertical stratification of the ACC against observations, Dynamics of Atmospheres and Oceans, 36, 233-246, 2002.
    • Keeling, R. F. and Stephens, B. B.: Antarctic sea ice and the control of Pleistocene climate instability, Paleoceanography, 16, 112-131, 2001.
    • 5 Keigwin, L. D.: Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic, Paleoceanography, 19, 1-15, 2004.
    • Keigwin, L. D. and Lehmann, S. J.: Deep circulation change linked to Heinrich event 1 and Younger Dryas in a mid-depth North Atlantic core, Paleoceanography, 9, 185-194, 1994.
    • Kim, S.-J., Flato, G. M., and Boer, G. J.: A coupled climate model simulation of the Last Glacial 10 Maximum, Part 2: approach to equilibrium, Clim. Dyn., 20, 635-661, 2003.
    • Knox, F. and McElroy, M.: Changes in atmospheric CO2: influence of marine biota at high latitude, J. Geophys. Res., 89, 4629-4637, 1984.
    • Levitus, S.: World Ocean Atlas, NOAA, Washington D.C., 1994.
    • Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An estimate of global primary 15 production in the ocean from satellite radiometer data, J. Plankton Res., 17, 1245-1271, 1995.
    • Marchitto, T. M., Oppo, D. W., and Curry, W. B.: Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic, Paleoceanography, 17, 10.1-10.16, 2000PA000598, 2002.
    • 20 Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX: carbon cycling in the northeast Pacific, Deep Sea Res., 34, 267-286, 1987.
    • McCartney, M. S.: Recirculating components to the deep boundary current of the northern North Atlantic, Progress in Oceanography, 29, 283-383, 1992.
    • Menard, H. W. and Smith, S. M.: Hypsometry of ocean basin provinces, J. Geophys. Res., 71, 25 4305-4325, 1966.
    • Michel, E., Labeyrie, L., Duplessy, J.-C., and Gorfti, N.: Could deep Subantarctic convection feed the worl deep basins during last glacial maximum?, Paleoceanography, 10, 927-942, 1995.
    • Naviera Garabato, A. C., Polzin, K. L., King, B. A., Heywood, K. J., and Visbeck, M.: 30 Widespread intense turbulent mixing in the Southern Ocean, Science, 303, 210-213, 2004.
    • Oppo, D. and Fairbanks, R. G.: Atlantic ocean thermohaline circulation of the last 150 000 years: Relationship to climate and atmospheric CO2, Paleoceanography, 5, 277-288, 1990.
    • Oppo, D. W., Fairbanks, R. G., Gordon, A. L., and Shackleton, N. J.: Late Pleistocene Southern Ocean d13C variability, Paleoceanography, 5, 43-54, 1990.
    • Orsi, A. H., Johnson, G. C., and Bullister, J. L.: Circulation, mixing and production of Antarctic Bottom Water, Progress in Oceanography, 43, 55-109, 1999.
    • Parrenin, F. and Paillard, D.: Amplitude and phase of glacial cycles from a conceptual model, 5 Earth Planet. Sci. Lett., 214, 243-250, 2003.
    • Piotrowski, A., Goldstein, S. L., Hemming, S. R., and Fairbanks, R. G.: Temporal relationships of carbon cycling and ocean circulation at glacial boundaries, Science, 307, 1933-1938, 2005.
    • Piotrowski, A. M., Goldstein, S. L., Hemming, S. R., and Fairbanks, R. G.: Intensification and 10 variability of ocean thermohaline circulation through the last deglaciation, Earth Planet. Sci.
    • Lett., 225, 205-220, 2004.
    • Robinson, L. F., Adkins, J. F., Keigwin, L. D., Southon, J., Fernandez, D. P., Wang, S.-L., and Scheirer, D. S.: Radiocarbon variability in the western North Atlantic during the last deglaciation, Science, 310, 1469-1473, 2005.
    • 15 Rutberg, R. L., Heming, S. R., and Goldstein, S. L.: Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios, Nature, 405, 935-938, 2000.
    • Sabine, C., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, 20 A. F.: The oceanic sink for anthropogenic CO2, Science, 305, 367-371, 2004.
    • Santos, V., Billett, D. S. M., Rice, A. L., and Wolff, G. A.: Organic matter in deep-sea sediments from the Porcupine Abyssal Plain in the northeast Atlantic Ocean. I - Lipids, Deep Sea Res., 41, 787-819, 1994.
    • Sarmiento, J. L. and Toggweiler, R.: A new model for the role of the oceans in determining 25 atmospheric pCO2, Nature, 308, 621-624, 1984.
    • Shackleton, N. J.: The 100 000-year ice-age cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity, Science, 289, 1897-1902, 2000.
    • Shin, S. I., Liu, Z., Otto-Bliesner, B. L., Brady, E. C., Kutzbach, J. E., and Harrison, S. P.: A simulation of the last glacial maximumclimate using the NCAR-CCSM, Clim. Dyn., 20, 127- 30 151, 2003.
    • Siegenthaler, U., Stocker, T. F., Monnin, E., Luthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V., and Jouzel, J.: Stable carbon cycle - climate relationship during the Late Pleistocene, Science, 310, 1313-1317, 2005.
    • Siegenthaler, U. and Wenk, T.: Rapid atmospheric CO2 variations and ocean circulation, Nature, 308, 624-625, 1984.
    • Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859-869, 2000.
    • 5 Skinner, L. C. and Shackleton, N. J.: Rapid transient changes in Northeast Atlantic deep-water ventilation-age across Termination I, Paleoceanography, 19, 1-11, doi:10.1029/2003PA000983, 2004.
    • Speer, K., Rintoul, S. R., and Sloyan, B.: The diabatic deacon cell, J. Phys. Oceanogr., 30, 3212-3222, 2000.
    • 10 Toggweiler, J. R.: Variation of atmospheric CO2 by ventilation of the ocean's deepest water, Paleoceanography, 14, 571-588, 1999.
    • Toggweiler, J. R., Gnanadesikan, A., Carson, S., Murnane, R., and Sarmiento, J. L.: Representation of the carbon cycle in box models and GCMs: 1. Solubility pump, Global Biogechem.
    • Cycles, 17, 26.1-26.11, doi:10.1029/2001GB001401, 2003a.
    • 15 Toggweiler, J. R., Murnane, R., Carson, S., Gnanadesikan, A., and Sarmiento, J. L.: Representation of the carbon cycle in box models and GCMs: 2. Organic pump, Global Biogeochem.
    • Cycles, 17, 27.1-27.13, doi:10.1029/2001GB001841, 2003b.
    • Toggweiler, J. R. and Samuels, B.: On the Ocean's Large-Scale Circulation near the Limit of No Vertical Mixing, J. Phys. Oceanogr., 28, 1832-1852, 1998.
    • 20 Toggweiler, J. R. and Sarmiento, J. L.: Glacial to interglacial changes in atmospheric carbon dioxide: the critical role of ocean surface water in high latitudes, in: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, pp. 163-184, Geophys. Monograph, American Geophysical Union, 1985.
    • Watson, A. J. and Naveira Garabato, A. C.: The role of Southern Ocean mixing and upwelling 25 in glacial - interglacial atmospheric CO2 change, Tellus 58B, 73-87, 2006.
    • Webb, D. J. and Suginohara, N.: Vertical mixing in the ocean, Nature, 409, 37, 2001.
    • Wunsch, C.: What is the thermohaline circulation?, Science, 298, 1179-1181, 2002.
    • 0 2 350 O C p irc 300 e h p s o 250 m t A 16 14 12 10 8 6 4 Southern overturning, Fs (Sv) 14 12 10 8 6 4 Northern overturning, Fn (Sv)
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article