LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Vaivads , A.; Rönnmark , K.; Oscarsson , T.; André , M. (1998)
Publisher: European Geosciences Union
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, Science, Physics, QC1-999, QC801-809

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Physics::Plasma Physics
Satellite measurements show that ion beams above the auroral acceleration region are heated to hundreds of eV in a direction perpendicular to the magnetic field. We show that ion acoustic waves may be responsible for much of this heating. Even in the absence of a positive slope in the velocity distribution of the beam ions, ion acoustic waves can be generated by a fan instability. We present analytical estimates of the wave growth rate and ion beam heating rate. These estimates, which are confirmed by particle simulations, indicate that the perpendicular temperature of the beam ions will increase by 30 eV/s, or by 1 eV in 20–25 km. From the simulations we also conclude that the heating saturates at a perpendicular temperature around 200 eV, which is consistent with observations.

Key words. Ionosphere (wave-particle interactions) · Magnetospheric Physics (plasma waves and instabilities) · Space plasma physics (wave-particle interactions).

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andre , M., H. Koskinen, G. Gustafsson, and R. Lundin, Ion waves and upgoing ion beams observed by the Viking satellite, Geophys. Res. Lett., 14, 463±466, 1987.
    • Bahnsen, A., M. Jespersen, E. Ungstrup, R. Pottelette, M. Malingre, P. M. E. De cre au, M. Hamelin, H. de Feraudy, S. Perraut, and B. M. Pedersen, First Viking results: high frequency waves, Phys. Scr., 37, 469±474, 1988.
    • Bergmann, R., I. Roth, and M. K. Hudson, Linear stability of the H‡ ÿO‡ two-stream interaction in a magnetized plasma, J. Geophys. Res., 93, 4005±4020, 1988.
    • Birdsall C. K., and A. B. Langdon, Plasma physics via computer simulations, Adam Hilger, Bristol, 1991.
    • Cattell, C. A., F. S. Mozer, I. Roth, R. R. Anderson, R. C. Elphic, W. Lennartsson, and E. Ungstrup, ISEE 1 observations of electrostatic ion cyclotron waves in association with ion beams on auroral ®eld lines from 2:5 to 4.5 RE, J. Geophys. Res., 96, 11421±11439, 1991.
    • Collin, H. L., W. K. Peterson, and E. G. Shelley, Solar cycle variation of some mass dependent characteristics of up¯owing beams of terrestrial ions, J. Geophys. Res., 92, 4757±4762, 1987.
    • Fuchs, V., M. Shoucri, J. Teichmann, and A. Bers, Runaway electron distributions and their stability with respect to the anomalous Doppler resonance, Phys. Fluids, 31, 2221±2227, 1988.
    • Gorney, D. J., A. Clarke, D. Croley, J. Fennell, J. Luhmann, and P. Mizera, The distribution of ion beams and conics below 8000 km, J. Geophys. Res., 86, 83±89, 1981.
    • Gray, P. C., M. K. Hudson, R. Bergmann, and I. Roth, Simulation study of ion two-stream instability in the auroral acceleration region, Geophys. Res. Lett., 17, 1609±1612, 1990.
    • Gustafsson, G., M. Andr eÂ, L. Matson, and H. Koskinen, On waves below the local proton gyrofrequency in auroral acceleration regions, J. Geophys. Res., 95, 5889±5904, 1990.
    • Hultqvist, B., The swedish satellite project Viking, J. Geophys. Res., 95, 5749±5752, 1990.
    • Kaufmann, R. L., G. R. Ludlow, H. L. Collin, W. K. Peterson, and J. L. Burch, Interaction of upgoing auroral H‡ and O‡ beams, J. Geophys. Res., 91, 10080±10096, 1986.
    • Kondo, T., B. A. Whalen, A. W. Yau, and W. K. Peterson, Statistical analysis of up¯owing ion beam and conic distributions at DE 1 altitudes, J. Geophys. Res., 95, 12091±12102, 1990.
    • Koskinen, H. E. J., R. Lundin, and B. Holback, On the plasma environment of solitary waves and weak double layers, J. Geophys. Res., 95, 5921±5929, 1990.
    • Miura, A., H. Okuda, and M. Ashour-Abdalla, Ion-beam-driven electrostatic ion cyclotron instabilities, Geophys. Res. Lett., 10, 353±356, 1983.
    • Okuda, H., J. M. Dawson, A. T. Lin, and C. C. Lin, Quasi-neutral particle simulation model with application to ion wave propagation, Phys. Fluids, 21, 476±482, 1978.
    • Omelchenko, Yu. A., V. D. Shapiro, V. I. Shevchenko, M. AshourAbdalla, and D. Schriver, Modi®ed lower hybrid fan instability excited by precipitating auroral electrons, J. Geophys. Res., 99, 5965±5975, 1994.
    • Rei€, P. H., H. L. Collin, J. D. Craven, J. L. Burch, J. D. Winningham, E. G. Shelley, L. A. Frank, and M. A. Friedman, Determination of auroral electrostatic potentials using highand low-altitude particle distributions, J. Geophys. Res., 93, 7441±7465, 1988.
    • RoÈ nnmark, K., Computation of the dielectric tensor of a Maxwellian plasma, Plasma Phys., 25, 699±701, 1983.
    • Sandahl, I., R. Lundin, and L. Eliasson, The hot plasma spectrometers on Viking, KGI Preprint 077, Kiruna Geophysical Institute, 1985.
    • Schriver, D., M. Ashour-Abdalla, H. Collin, and N. Lallande, Ion beam heating in the auroral zone, J. Geophys. Res., 95, 1015± 1028, 1990.
    • Shapiro, V. D., and V. I. Shevchenko, Astrophysical plasma turbulence. I, Sov. Sci. Rev. E. Astrophys Space Phys., 6, 425± 546, 1988.
    • Vaivads, A., K. RoÈ nnmark, and M. Andr eÂ, Generation of ion acoustic waves by fan instability, J. Geophys. Res., 100, 19435± 19440, 1995.
    • Wahlund, J.-E., P. Louarn, T. Chust, H. de Feraudy, A. Roux, B. Holback, P.-O. Dovner, and G. Holmgren, On ion acoustic turbulence and the nonlinear evolution of kinetic Alfve n waves in aurora, Geophys. Res. Lett., 21, 1831±1834, 1994.
    • Winglee, R. M., P. B. Dusenbery, H. L. Collin, C. S. Lin, and A. M. Persoon, Simulations and observations of heating of auroral ion beams, J. Geophys. Res., 94, 8943±8965, 1989.
    • Yau, A. W., B. A. Whalen, W. K. Peterson, and E. G. Shelley, Distribution of up¯owing ionospheric ions in the high-altitude polar cap and auroral ionosphere, J. Geophys. Res., 89, 5507± 5522, 1984.
  • No related research data.
  • No similar publications.