LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Guerreiro, Kevin; Fleury, Sara; Zakharova, Elena; Kouraev, Alexei; Rémy, Frédérique; Maisongrande, Philippe (2017)
Languages: English
Types: Article
Subjects:
During the past decade, sea ice freeboard height has been monitored with various satellite altimetric missions with the aim of producing long-term time series of ice thickness. To achieve this goal, it is essential to analyze potential inter-mission biases and to produce freeboard height datasets as free of instrumental error as possible. In the present study, we compare Envisat and CryoSat-2 freeboard height during the common flight period (2010–2012). Our results show that Envisat freeboard height is always thinner (−14 cm in average) when compared to CryoSat-2 (3 cm in average). In addition, Envisat freeboard height displays an unrealistive negative growth from November to April (−2.4 to −3.7 cm) while CryoSat-2 dispalys a positive and coherent winter growth (2.4 to 2.7 cm). The discrepancy between the two datasets is found to be related to a dissimilar impact of ice roughness and snow volume scattering on SAR (CryoSat-2) and pulse-limited (Envisat) altimetry. Following this result, we show that the freeboard height difference between the two datasets can be expressed as a function of the waveform pulse-peakiness. Based on the relation between the Envisat pulse-peakiness and the freeboard height difference, we produce a monthly CryoSat-2-like version of Envisat freeboard height that reduces the average RMSD with CryoSat-2 from ~ 16 cm to ~ 2 cm and improves the freeboard height growth cycle (2–3 cm). The comparison of the altimetric datasets with in situ ice draft measurements during the common flight period shows that the corrected Envisat dataset (RMSE = 16–29 cm) is as accurate as CryoSat-2 (RMSE = 13–25 cm) and highly more accurate than the uncorrected Envisat dataset (RMSE = 108–132 cm). The comparison of the improved Envisat freeboard height dataset is then extended to the rest of the Envisat mission to demonstrate the validity of the improved Envisat dataset out of the calibration period. As a result, we find a good agreement between the Envisat and the in situ ice draft datasets (RMSE = 14–30 cm), which demonstrates the potential of the pulse-peakiness-correction to produce accurate freeboard height estimates over the entire Envisat mission. Finally, we show the averaged-circumpolar ice thickness variations from 2002 to 2015 by combining CryoSat-2 and Envisat datasets.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from