Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Damoah, R.; Spichtinger, N.; Servranckx, R.; Fromm, M.; Eloranta, E. W.; Razenkov, I. A.; James, P.; Shulski, M.; Forster, C.; Stohl, A. (2006)
Publisher: European Geosciences Union
Languages: English
Types: Article
Subjects: [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere
International audience; Summer 2004 saw severe forest fires in Alaska and the Yukon Territory that were mostly triggered by lightning strikes. The area burned (>2.7×106 ha) in the year 2004 was the highest on record to date in Alaska. Pollutant emissions from the fires lead to violation of federal standards for air quality in Fairbanks.

This paper studies deep convection events that occurred in the burning regions at the end of June 2004. The convection was likely enhanced by the strong forest fire activity (so-called pyro-convection) and penetrated into the lower stratosphere, up to about 3 km above the tropopause. Emissions from the fires did not only perturb the UT/LS locally, but also regionally. POAM data at the approximate location of Edmonton (53.5° N, 113.5° W) show that the UT/LS aerosol extinction was enhanced by a factor of 4 relative to unperturbed conditions. Simulations with the particle dispersion model FLEXPART with the deep convective transport scheme turned on showed transport of forest fire emissions into the stratosphere, in qualitatively good agreement with the enhancements seen in the POAM data. A corresponding simulation with the deep convection scheme turned off did not result in such deep vertical transport. Lidar measurements at Wisconsin on 30 June also show the presence of substantial aerosol loading in the UT/LS, up to about 13 km. In fact, the FLEXPART results suggest that this aerosol plume originated from the Yukon Territory on 25 June.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alaska Interagency Coordination Center (AICC) Report (see, http: //fire.ak.blm.gov): Review of the 2004 fire season, 2004.
    • Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303, 1337-1342, 2004.
    • Cofer, W. R., Winstead, E. L., Stocks, B. J., Goldammer, J. G., and Cahoon, D. R.: Crown fire emissions of CO2, CO, H2, CH4, and TNMHC from dense jack pine boreal forest fire, Geophys. Res. Lett., 25, 3919-3922, 1998.
    • Crutzen, P. J.: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere, Pure Appl. Geophys., 106-108, 1385-1399, 1973.
    • Crutzen, P. J. and Andreae, M. O.: Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles, Science, 250, 1669-1678, 1990.
    • Damoah, R., Spichtinger, N., Forster, C., James, P., Mattis, I., Wandinger, U., Beirle, S., Wagner, T., and Stohl, A.: Around the world in 17 days - hemispheric-scale transport of forest fire smoke from Russia in May 2003, Atmos. Chem. Phys., 4, 1311- 1321, 2004, SRef-ID: 1680-7324/acp/2004-4-1311.
    • ECMWF: User Guide to ECMWF Products 2.1, Meteorol. Bull. M3.2, ECMWF, Reading, UK, 1995.
    • Eloranta, E. W.: High Spectral Resolution Lidar in Lidar: RangeResolved Optical Remote Sensing of the Atmosphere, edited by: Weitkamp, K., Springer Series in Optical Sciences, Springer Verlag, New York, 143-163, 2005.
    • Emanuel, K. A. and Zivkovic-Rothman, M.: Development and evaluation of a convection scheme for use in climate models, J. Atmos. Sci., 56, 1766-1782, 1999.
    • Forster, C., Wandinger, U., Wotawa, G., James, P., Mattis, I., Althausen, D., Simmonds, P., O'Doherty, S., Jennings, S., Kleefeld, C., Schnieder, J., Trickl, T., Kreipl, S., Ja¨ger, H., and Stohl, A.: Transport of boreal forest fire emissions from Canada to Europe, J. Geophys. Res., 106, 22 887-22 906, 2001.
    • Fromm, M., Bevilacqua, R., Hornstein, J., Shettle, E., Hoppel, K., and Lumpe, J. D.: An analysis of Polar Ozone and Aerosol Measurement (POAM) II Arctic polar stratospheric cloud Observations, 1993-1996, J. Geophys. Res., 104, 24 341-24 357, 1999.
    • Fromm, M. D. and Servranckx, R.: Transport of forest fire smoke above the tropopause by supercell convection, Geophys. Res. Lett., 30, 1542, doi:1029/2002GL016820, 2003.
    • Fromm, M., Bevilacqua, R., Servranckx, R., Rosen, J., Thayer, P. J., Herman, J., and Larko, D.: Pyro-cumulonimbus injection of smoke to the stratosphere: observations and impact of a super blowup in northwestern Canada on 3-4 August 1998, J. Geophys. Res., 110, D08205, doi:10.1029/2004JD005350, 2005.
    • Graf, H., Herzog, M., Oberhuber, J. M., and Textor, C.: The effect of environmental conditions on volcanic plume rise, J. Geophys. Res., 104, 24 309-24 320, 1999.
    • Herring, J. A. and Hobbs, P. V.: Radiatively driven dynamics of the plume from the 1991 Kuwait oil fires, J. Geophys. Res., 99, 18 809-18 826, 1994.
    • Hsu, N. C., Herman, J., Gleason, J., Torres, O., and Seftor, C.: Satellite detection of smoke aerosols over a snow/ice surface by TOMS, Geophys. Res. Lett., 26, 1165-1168, 1999.
    • Iacobellis, S. F., Frouin, R., and Somerville, R. C. J.: Direct climate forcing by biomass-burning aerosols: impact of correlations between controlling variables, J. Geophys. Res., 104, 12 031- 12 045, 1999.
    • Jost, H. J., Drdla, K., Stohl, A., Pfister, L., Loewenstein, M., Lopez, J. P., Hudson, P. K., Murphy, D. M., Cziczo, D. J., Fromm, M., Bui, T. P., Dean-Day, J., Gerbig, C., Mahoney, M. J., Richard, E. C., Spichtinger, N., Pittman, J. V., Weinstock, E. M., Wilson, J. C., and Xueref, I.: In-situ observations of mid-latitude forest fire plumes deep in the stratosphere, Geophys. Res. Lett. 31, 11 101, doi:10.1029/2003GL019253, 2004.
    • Justice, C. O., Kendall, J. D., Dowty, P. R., and Scholes, R.: Satellite remote sensing of fires during the SAFARI campaign using NOAA advanced very high radiometer data, J. Geophys. Res., 101, 23 851-23 863, 1996.
    • Kato, S., Pochanart, P., Hirokawa, J., Kajii, Y., Akimoto, H., Ozaki, Y., Obi, K., Katsuno, T., Streets, D. G., and Minko, N. P.: The influence of Siberian forest fires on carbon monoxide concentrations at Happo, Japan, Atmos. Environ., 36, 385-390, 2002.
    • Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., Ward, D. E., Menzel, W. P., and Setzer, A. W.: Potential global fire monitoring from EOS-MODIS, J. Geophys. Res., 103, 32 215-32 238, 1998.
    • Kaufman, Y. J., Ichoku, C., Giglio, L., Korontzi, S., Chu, D. A., Hao, W. M., Li, R.-R., and Justice, C. O.: Fire and smoke observed from Earth Observing System MODIS instrument - products, validation, and operational use, Int. J. Remote Sensing, 24, 1765-1781, 2003.
    • Livesey, N. J., Fromm, M. D., Waters, J. W., Manney, G. L., Santee, M. L., and Read, W. G.: Enhancement in lower stratospheric CH3CH observed by the Upper Atmosphere Research Satellite Microwave Limb Sounder following boreal forest fires, J. Geophys. Res., 109, D06308, doi:10.1029/2003JD004055, 2004.
    • Lucke, R., Korwan, D., Bevilacqua, R., Hornstein, J., Shettle, E., Chen, D., Daehler, M., Lumpe, J., Fromm, M., Debrestian D., Neff, B., Squire,M., Ko¨nig-Langglo, and Davis J.: The Polar Ozone and Aerosol Measurement (POAM) III instrument and early validation results , J. Geophys. Res., 104, 18 785-18 799, 1999.
    • Mauldin, L., Zuan, N., McCormic, M., Guy, J., and Vaughn, W.,: Stratospheric Aerosol and Gas Expriment II instrument: A functional description, Opt. Eng., 24, 307-312, 1985.
    • Novelli, P. C., Masarie, K. A., Land, P. M., Hall, B. D., Myers, R. C., and Elkins, J. W.: Reanalysis of tropospheric CO trends: Effects on the 1997-1998 wildfires, J. Geophys. Res., 108, 4464, doi:10.1029/2002JD003031, 2003.
    • Robock, A.: Surface cooling due to forest fire smoke. J. Geophys. Res., 96, 20 869-20 878, 1991.
    • Rorig, M. L. and Ferguson, S. A.: Characteristics of lightning and wildland fire ignition in the Pacific Northwest, J. Appl. Meteor., 38, 1565-1575, 1999.
    • Rozell, N.: Smoked pike on menu for Yukon Flats scientists, Alaska Science Forum, 1710, 2004.
    • Salby, M. L.: Fundamentals of Atmospheric Physics, International Geophysics Series, 622 pp., Academic Press, 1996.
    • Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, 1326 pp., John Wiley, Inc., New York, 1998.
    • Spichtinger, N., Damoah, R., Eckhard, S., Forster, C., James, P., Beirle, T., Wagner, T., Novelli, P. C., and Stohl, A.: Boreal forest fires in 1997 and 1998: A seasonal comparison using transport model simulations and measurement data, Atmos. Chem. Phys., 4, 1857-1868, 2004, SRef-ID: 1680-7324/acp/2004-4-1857.
    • Stohl, A., Hittenberger, M., and Wotawa, G.: Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data, Atmos. Environ., 32, 4245-4264, 1998.
    • Stohl, A. and Thomson, D. J.: A density correction for Lagrangian particle dispersion models, Boundary-Layer Meteorol., 90, 155- 167, 1999.
    • Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: The Lagragian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461-2474, 2005, SRef-ID: 1680-7324/acp/2005-5-2461.
    • Tanimoto, H., Kajii, Y., Hirokawa, J., Akimoto, H., and Minko, N. P.: The atmospheric impact of boreal forest fires in far eastern Siberia on the seasonal variation of carbon monoxide : observations at Rishiri, a northern remote island in Japan, Geophys. Res. Lett., 27, 4073-4076, 2000.
    • Trentmann, J., Andreae, M. O., Graf, H.-F., Hobbs, P. V., Ottmar, R. D., and Trautmann, T.: Simulation of a biomass-burning plume: Comparison of model results with observations, J. Geophys. Res., 107, 4013, doi:10.1029/2001JD000410, 2002.
    • Westphal, D. and Toon, O. B.: The short-term temperature response to smoke from oil fires, J. Geophys. Res. Lett., 96, 22 379- 22 400, 1991.
    • Wotawa, G. and Trainer, M.: The influence of Canadian forest fires on pollutant concentrations in the United States, Science, 288, 324-328, 2000.
    • Wotawa, G., Novelli, P. C., Trainer, M., and Granier, C.: Interannual variability of summertime CO concentrations in the Northern Hemisphere explained by boreal forest fires in North America and Russia, Geophys. Res. Lett., 28, 4575-4578, 2001.
    • Yurganov, N. L., Blumenstock, T., Grechko, I. E., Hase, F., Hyer, J. E., Kasischke, E. S., Koike, M., Kondo, Y., Kramer, I., Leung, F.-Y., Mahieu, E., Mellqvist, J., Notholt, J., Novelli, C. P., Rinsland, P. C., Scheel, E. H., Schulz, A., Strandberg, A., Sussmann, R., Tanimoto, H., Velazco, V., Zander, R., and Zhao, Y.: A quantitative assessment of the 1998 carbon monoxide emissions anomaly in the Northern Hemisphere based on total column and surface concentration measurements, J. Geophys. Res., 109, D15305, doi:10.1029/2004JD004559, 2004.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article