Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
R. B. Cosgrove (2007)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, Science, Physics, QC1-999, QC801-809
International audience; It has recently been shown, by computation of the linear growth rate, that midlatitude sporadic-E (Es) layers are subject to a large scale electrodynamic instability. This instability is a logical candidate to explain certain frontal structuring events, and polarization electric fields, which have been observed in Es layers by ionosondes, by coherent scatter radars, and by rockets. However, the original growth rate derivation assumed an infinitely thin Es layer, and therefore did not address the short wavelength cutoff. Also, the same derivation ignored the effects of F region loading, which is a significant wavelength dependent effect. Herein is given a generalized derivation that remedies both these short comings, and thereby allows a computation of the wavelength dependence of the linear growth rate, as well as computations of various threshold conditions. The wavelength dependence of the linear growth rate is compared with observed periodicities, and the role of the zeroth order meridional wind is explored. A three-dimensional paper model is used to explain the instability geometry, which has been defined formally in previous works.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bernhardt, P. A.: The modulation of sporadic-E layers by KelvinHelmholtz billows in the neutral atmosphere, J. Atmos. Solar Terr. Phys., 105, 1487-1504, 2002.
    • Bilitza, D.: International Reference Ionosphere, National Space Science Data Center/World Data Center-A for Rockets and Satellites, 1990.
    • Cosgrove, R. B. and Tsunoda, R. T.: A direction-dependent instability of sporadic-E layers in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 29(18), 1864-1867, 2002.
    • 1Cosgrove, R. B.: Generation of mesoscale F layer structure and electric fields by the combined Perkins and Es layer instabilities, in simulations, Ann. Geophys., submitted, 2007.
    • Cosgrove, R. B. and Tsunoda, R. T.: Simulation of the nonlinear evolution of the sporadic-E layer instability in the nighttime midlatitude ionosphere, J. Geophys. Res., 108(A7), 1283, doi:10.1029/2002JA009728, 2003.
    • Cosgrove, R. B. and Tsunoda, R. T.: Instability of the E-F coupled nighttime midlatitude ionosphere, J. Geophys. Res., 109, A04305, doi:10.1029/2003JA010243, 2004a.
    • Cosgrove, R. B. and Tsunoda, R. T.: Coupling of the Perkins instability and the sporadic E layer instability derived from physical arguments, J. Geophys. Res., 109, A06301, doi:10.1029/2003JA010295, 2004b.
    • Goodwin, G. L. and Summers, R. N.: Es layer characteristics determined from spaced ionosondes, Planet Space Sci., 18, 1417- 1432, 1970.
    • Huang, C. and Kelley, M. C.: Numerical simulation of gravity wave modulation of midlatitude sporadic E layers, J. Geophys. Res., 101(A11), 24 533-24 543, 1996.
    • Hysell, D. L., Yamamoto, M., and Fukao, S.: Simulations of plasma clouds in the midlatitude E region ionosphere with implications for Type I and Type II quasiperiodic echoes, J. Geophys. Res. 107(A10), 1313, doi:10.1029/2002JA009291, 2002.
    • Hysell, D. L.: Presentation at the CEDAR workshop in Santa Fe, New Mexico, 2006.
    • Jones, K. L.: Mechanisms for vertical separation of ions in sporadic-E layers, J. Atmos. Terr. Phys., 51(6), 469-476, 1989.
    • Kelley, M. C. and Gelinas, L. J.: Gradient drift instability in midlatitude sporadic E layers: localization of physical and wavenumber space, Geophys. Res. Lett., 27(4), 457-460, 2000.
    • Larsen, M. F., Fukao, S., Yamamoto, M., Tsunoda, R., Igarashi, K., and Ono, T.: The SEEK chemical release experiment: Observed neutral wind profile in a region of sporadic E, Geophys. Res. Lett., 25, 1789-1792, 1998.
    • Larsen, M. F.: A shear instability seeding mechanism for quasiperiodic radar echoes, J. Geophys. Res. 105, 24 931-24 940, 2000.
    • Larsen, M. F.: Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements, J. Geophys. Res., 107(A8), 1215, doi:10.1029/2001JA000218, 2002.
    • Miller, K. L. and Smith, L. G.: Incoherent scatter radar observations of irregular structure in midlatitude sporadic-E layers, J. Geophys. Res., 83, 3761-3775, 1978.
    • Mori, H. and Oyama, K.: Sounding rocket observation of sporadic-E layer electron-density irregularities, Geophys. Res. Lett. 25(11), 1785-1788, 1998.
    • Perkins, F.: Spread F and ionospheric currents, J. Geophys. Res., 78, 218-226, 1973.
    • Pfaff, R., Yamamoto, M., Marionni, P., Mori, H., and Fukao, S.: Electric field measurements above and within a sporadic-E layer, Geophys. Res. Lett. 25, 1769-1772, 1998.
    • Pfaff, R., Freudenreich, H., Yokoyama, T., Yamamoto, M., Fukao, S., Mori, H., Ohtsuka, S., and Iwagami, N.: Electric field measurements of DC and long wavelength structures associated with sporadic-E layers and QP radar echoes, Ann. Geophys., 23, 2319-2334, 2005, http://www.ann-geophys.net/23/2319/2005/.
    • Rees, D.: COSPAR international reference atmosphere: 1986 part I: Thermosphere models, Adv. Space Res., 8(5-6), 27-106, Pergamon Press, 1988.
    • Riggin, D., Swartz, W. E., Providakes, J., and Farley, D. T.: Radar studies of long-wavelength waves associated with midlatitude sporadic E layers, J. Geophys. Res., 91, 8011-8024, 1986.
    • Rosado-Roman, J. M., Swartz, W. E., and Farley, D. T.: Plasma instabilities observed in the E region over Arecibo and a proposed nonlocal theory, J. Atmos. Solar Terr. Phys., 66, 1593- 1602, 2004.
    • Schlegel, K. and Haldoupis, C.: Observation of the modified twostream plasma instability in the midlatitude E region ionosphere, J. Geophys. Res. 99, 6219-6226, 1994.
    • Seyler, C. E., Rosado-Roman, J. M., and Farley, D. T.: A nonlocal theory of the gradient-drift instability in the ionospheric Eregion plasma at midlatitudes, J. Atmos. Solar Terr. Phys., 66, 1627-1637, 2004.
    • Tsunoda, R., Fukao, S., and Yamamoto, M.: On the origin of quasiperiodic radar backscatter from midlatitude sporadic E, Radio Sci. 29, 349-365, 1994.
    • Tsunoda, R. T., Fukao, S., Yamamoto, M., and Hamasaki, T.: First 24.5-MHz radar measurements of quasi-periodic backscatter from field-aligned irregularities in midlatitude sporadic E, Geophys. Res. Lett., 25(11), 1765, 1998.
    • Tsunoda, R. T., Cosgrove, R. B., and Ogawa, T.: Azimuthdependent Es layer instability: A missing link found, J. Geophys. Res., 109, A12303, doi:10.1029/2004JA010597, 2004.
    • Wakabayashi, M., Ono, T., Mori, H., and Bernhard, P. A. T.: Electron density and plasma waves in mid-latitude sporadic-E layer observed during the SEEK-2 campaign, Ann. Geophys., 23, 2335-2345, 2005, http://www.ann-geophys.net/23/2335/2005/.
    • Whitehead, J. D.: Report on the production and prediction of sporadic-E, Rev. Geophys. Space Phys., 8, 65-144, 1970.
    • Yamamoto, M., Fukao, S., Woodman, R. F., Ogawa, T., Tsuda, T., and Kato, S.: Midlatitude E-region field-aligned irregularities observed with the MU radar, J. Geophys. Res. 96, 15 943- 15 949, 1991.
    • Yamamoto, M., Komoda, N., Fukao, S., Tsunoda, R., Ogawa, T., and Tsuda, T.: Spatial structure of the E region field-aligned irregularities revealed by the MU radar, Radio Sci., 29(1), 337, 1994.
    • Yamamoto, M., Fukao, S., Tsunoda, R. T., Igarashi, K., and Ogawa, T.: Preliminary results from joint measurements of E-region field-aligned irregularities using the MU radar and the frequencyagile radar, J. Atmos. Solar Terr. Phys., 59, 1655-1663, 1997.
    • Yamamoto, M., Itsuki, T., Kishimoto, T., Tsunoda, R. T., Pfaff, R. F., and Fukao, S.: Comparison of E-region electric fields observed with a sounding rocket and a Doppler radar in the SEEK campaign, Geophys. Res. Lett. 25, 1773, 1998.
    • Yamamoto, M., Fukao, S., Tsunoda, R. T., Pfaff, R., and Hayakawa, H.: SEEK-2 (sporadic-E experiment over Kyushu 2)-project outline, and significance, Ann. Geophys., 23, 2319-2334, 2005, http://www.ann-geophys.net/23/2319/2005/.
    • Yokoyama, T. Horinouchi, Yamamoto, M., and Fukao, S.: Modulation of the midlatitude ionospheric E region by atmospheric gravity waves through polarization electric field, J. Geophys. Res. 109, A12307, doi:10.1029/2004JA010508, 2004.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok