LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
V. Mouslopoulou; John Begg; Alexander Fülling; Daniel Moraetis; Panagiotis Partsinevelos; O. Oncken (2017)
Types: Article
Subjects:
The extent to which climate, eustacy and tectonics interact to shape the late Quaternary landscape is poorly known. Alluvial fans often provide useful indexes that allow decoding the information recorded on complex coastal landscapes, such as those of Eastern Mediterranean. In this paper we analyse and date (using optically stimulated luminescence – OSL) a double alluvial-fan system in Crete, an island straddling the forearc of the Hellenic subduction margin, in order to constrain the timing of, and quantify the contributing factors to, its landscape evolution. The studied alluvial system is unique because each of its two juxtaposed fans records individual phases of alluvial and marine incision, providing, thus, unprecedented resolution in the formation and evolution of its landscape. Specifically, our analysis shows that the fan sequence at Domata developed during the last glaciation (Marine Isotope Stage 3; 57–29 kyr) due to five distinct stages of marine transgressions and regressions and associated river incision, as a response to climatic changes and tectonic uplift at rates of ~ 2.2 mm/yr. Comparison of our results with published tectonic uplift rates from Crete shows, however, that vertical movement on Crete was minimal during 20–50 kyr BP and mot uplift was accrued during the last 20 kyr. This implies that eustacy and tectonism impacted on the landscape at Domata over mainly distinct time-intervals (e.g. sequentially and not synchronously), forming and preserving the coastal landforms, respectively.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article