LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cairo, F.; Buontempo, C.; Mackenzie, A. R.; Schiller, C.; Volk, C. M.; Adriani, A.; Mitev, V.; Matthey, R.; Di Donfrancesco, G.; Oulanovsky, A.; Ravegnani, F.; Yushkov, V.; Snels, M.; Cagnazzo, C.; Stefanutti, L. (2007)
Publisher: European Geosciences Union
Journal: Atmospheric Chemistry and Physics Discussions
Languages: English
Types: Article
Subjects: Chemistry, DOAJ:Earth and Environmental Sciences, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, QD1-999, G, Geography. Anthropology. Recreation, J, QC801-809, Geophysics. Cosmic physics, Physics, GE1-350, DOAJ:Environmental Sciences, Environmental sciences, QC1-999
ddc: ddc:550
During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame. <br><br> Temperature anomalies in the tropical tropopause layer (TTL), warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone was observed and perturbed water distribution in the TTL was documented. The paper discuss possible processes of dehydration induced by the cirrus forming above the cyclone, and change in the chemical tracer and water distribution in the lower stratosphere 400–430 K due to meridional transport from the mid-latitudes and link with Davina. Moreover it compares the data prior and after the cyclone passage to discuss its actual impact on the atmospheric chemistry and thermodynamics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • wavelength Aerosol Scatterometer for airborne experiments to study the stratospheric parti15 cle optical properties, J. Atmos. Ocean. Tech., 16, 1329-1336, 1999.
    • Rainfall Mesurement Mission (TRMM) precipitation radar, J. Geophys. Res. 107, 1-7, 2002.
    • Q. J. R. Meteorol. Soc., 109, 295-308, 1983. 20 Baray, J. L., Ancellet, G., Radriambelo, T., and Baldy, S.: Tropical cyclone Marlene and
    • stratosphere-troposphere exchange, J. Geophys. Res., 104, 13 953-13 970, 1999.
    • water vapour distribution in the stratosphere, Q. J. R. Meteorol. Soc., 75, 351-363, 1949.
    • Buontempo, C., Flentje, H., and Kiemle, K.: In the eye of a tropical cyclone, Weather, 61, 25 47-50, 2006.
    • tropical cyclones, Mon. Weather Rev., 133, 166-174, 2005.
    • Weather Rev. 133, 543-566, 2005.
    • Danielsen, E. F.: A dehydration mechanism for the stratosphere, Geophys. Res. Lett., 9, 605-
    • 608, 1982. 5 Danielsen, E. F.: In situ evidence of rapid, irreversible, vertical transport of lower tropospheric
    • in tropical cyclones, J. Geophys. Res., 98, D5, 8665-8681, 1993.
    • Geophys. Res., 107(D), ACH 6-1, ACH 6-5, 2002. 10 Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajec-
    • tory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.
    • html). NOAA Air Resources Laboratory, Silver Spring, MD, 2003.
    • Rev., 103, 420-430, 1975. 15 Dvorak, V. F.: Tropical cyclones intensity analysis using enhanced infrared satellite data, pro-
    • ceedings of the 11th technical conference on hurricanes and tropical meteoreology, AMS,
    • NESDIS 11, NOAA/NESDIS, 47 pp, 1984. 20 Ebert, E. E. and Holland, G. J.: Observation of record cloud top temperature in tropical cyclone
    • Hilda (1990), Mon. Weather Rev., 120, 2240-2251, 1991.
    • bons 11 and 12, Nature 364, 780-783, 1993. 25 Emanuel, K.: Thermodynamic control of cyclone intensity, Nature, 401, 665-669, 1999.
    • Emanuel, K.: Tropical Cyclones, Annu. Rev. Earth Planet. Sci., 31, 75-104, 2003.
    • Emanuel, K. A.: Increasing destructiveness of tropical cyclones over the past 30 years, Nature
    • Fahey, D. W., Donnelly, S. G., Keim, E. R., Gao, R. S., Wamsley, R. C., Del, L. A., Negro, E. L., 30 Woodbridge, M. H., Proffitt, K. H., Rosenlof, M. K. W., Ko, D. K., Weisenstein, C. J., Scott, C.,
    • Nevison, S., Solomon, S., and Chan, K. R.: In situ observations of NOy, O3, and the NOy/O3
    • ratio in the lower stratosphere, Geophys. Res. Lett., 23, 1653-1656, 1996.
    • mixing at 14 km in the tropics: Evidences from ozonesondes and aircraft measurements, J.
    • Geophys. Res., 104, 22 095-22 102, 1999.
    • equivalent potential temperatures, Geophys. Res. Lett., 27, 2549-2552, 2000. 5 Folkins, I., Braun, C., Thompson, A. M., and Witte, J.: Tropical ozone as an indicator of deep
    • convection, J. Geophys. Res., 107, D13, 4184, doi:10.1029/2001JD001178, 2002.
    • from trajectory calculations, J. Geophys. Res., 109, D3108, 2004.
    • Fujiwara, M., Kita, K., Ogawa, T., Kawakami, S., Sano, T., Komala, N., Saraspriya, S., and 10 Suripto, A.: Seasonal variation of tropospheric ozone in Indonesia revealed by 5-years
    • ground based observations, J. Geophys. Res., 105, 1879-1888, 2000.
    • Webster, C. R.: Convective generation of cirrus near the tropopause, J. Geophys. Res., 109,
    • D21203, doi:10.1029/2004JD004952, 2004.Gettelman, A., Salby M. L. and Sassi F., The 15 distribution and influence of convection in the tropical tropopause region, J. Geophys. Res,
    • 107, D10, doi:10.1029/2001JD001048, 2002.
    • Highwood, E. J. and Hoskins, B. J.: The tropical tropopause, Q. J. R. Meteorol. Soc., 124,
    • Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.: 20 Stratosphere troposphere exchange, Rev. Geophys., 33, 403-439, 1995.
    • Geophys. Res. Lett., 28, 2799-2802, 2001.
    • ozone monitoring instrument, Geophys. Res. Lett., 33, L06807, 2006. 25 Kelley, O. A. and Stout, J.: Convective towers in eyewalls of tropical cyclones observed by
    • the TRMM precipitation radar in 1998-2001, Proceedings of the AMS 20th Conference on
    • Weather Analysis and Forecast/16 Conference of Numerical Weather Prediction, 12-16 Jan-
    • uary 2004, Seattle, Washington.
    • Kirk-Davidoff, D.: The effect of climate change on ozone depletion through changes in strato30 spheric water vapor, Nature, 402, 399, 1999.
    • Crystals in the tops of tropical cumulonimbus, J. Geophys. Res., 98, 8639-8664, 1993.
    • sphere, Mon. Weather Rev., 95, 541-564, 1967.
    • Space Technology Experiment (LITE), J. Appl. Met. 42, 1003-1013, 2003.
    • Kritz, M. A., Rosner, S. W., Kelly, K. K., Loewenstein, M., and Chan, K. R.: Radon measure5 ments in the lower tropical stratosphere: evidence for rapid vertical transport and dehydration
    • of tropospheric air, J. Geophys. Res., 98, 8725-8736, 1993.
    • during the Airborne Polar Experiment: aircraft instrument validation, isentropic trends and 10 hemispheric fields prior to the 1997 Arctic ozone depletion, J. Geophys. Res., 105, 14 599-
    • top of convective storms, J. Atmos. Sci., 53, 361-369, 1996.
    • MacKenzie, A. R., Schiller, C., Peter, T., Adriani, A., Beuermann, J., Bujok, O., Cairo, F., 15 Corti, T., Di Donfrancesco, G., Gemsch, I., Kiemle, C., Kramer, M., Kroger, C., Merkulov,
    • torial Indian ocean during February and March 1999, J. Geophys. Res., 111, D18112,
    • doi:10.1029/2005JD006639, 2006. 20 Matthey, R., Mitev, V., Mileti, G., Makarov, V., Turin, A., Morandi, M., and Santacesaria, V.:
    • plications V; Proceedings of the Conference, Orlando, USA, 26-28 April 2000, pp. 44-53,
    • Merrill, R. T.: Characteristics of the Upper-tropospheric Environmental flow around Hurricanes, 25 J. Atmos. Sci., 45, 1665-1677, 1988.
    • T., Brockett, W., DeGreef, L., Lewis, D., McCormick, D., Monitz, E., Collins, J. E., Heikes, 30 B. G., Merrill, J. T., Kelly, K. K., Liu, S. C., Kondo, Y., Koike, M., Liu, C.-M., Sakamaki, F.,
    • with NASA DC-8 aircraft on September 27, 1991, during PEM-West A, J. Geophys. Res.,
    • 101(D1), 1853-1872, 1996.
    • Aerosol Sci. Tech., 8, 235-244, 1988.
    • Peet, E., Rudakov, V., Yushkov, V., Redaelli, G., and MacKenzie, A. R.: Ozone and water 5 vapour in the austral polar stratospheric vortex and sub-vortex, Ann. Geophys., 22, 4035-
    • 4041, 2004, http://www.ann-geophys.net/22/4035/2004/.
    • Penn, S.: Ozone and temperature structure in a Hurricane, J. Appl. Meteorol. 4, 212-216,
    • Penn, S.: Temperature and ozone variations near tropopause level over hurricane Isbell, Octo10 ber 1964, J. Appl. Meteorol., 5, 407-410, 1966.
    • Plumb, R. A.: A tropical pipe model of strotospheric transport, J. Geophys. Res., 101, 3957-
    • M. O., Cantrell, W., Cass, G. R., Chung, C. E., Clarke, A. D., Coakley J. A., Collins, W. D., 15 Conant, W. C., Dulac, F., Heintzenberg, J., Heymsfield, A. J., Holben, B., Howell, S., Hudson,
    • Valero, F. P. J.: Indian Ocean Experiment: an integrated analysis of the climate forcing and 20 effects of the great indo-asian Haze, J. Geophys. Res., 106, 28 731-28 398, 2001.
    • Geophys. Res., 112, D12311, doi:10.1029/2006JD008009, 2007.
    • Upper Tropospheric-Lower Stratospheric In-Situ Measurements Over Hurricane Floyd: The 25 Impact of Tropical Cyclones on Stratosphere-Troposphere Exchange American Geophysical
    • Union, Fall Meeting 2001.
    • //www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD,
    • 2003. 30 Santacesaria, V., Carla, R., MacKenzie, A. R., Adriani, A., Cairo, F., Di Donfrancesco, G.,
    • Indian Ocean, J. Geophys. Res., 108(D2), 4044, doi:10.1029/2002JDJD002166, 2003.
    • the tropopause region: a case study based on in-situ measurements of total water during 5 POLSTAR 1997, Geophys. Res. Lett., 26, 2219-2222, 1999.
    • system on the NASA ER-2 aircraft, J. Atmos. Ocean. Tech., 7, 525-540, 1990.
    • Atmos. Sci., 58, 765-779, 2001. 10 Stefanutti, L., MacKenzie, A. R., Santacesaria, V., Adriani, A., Balestri, S., Borrmann, S., Khat-
    • THESEO tropical campaign: An overview, J. Atmos. Chem., 48, 1-33, 2004.
    • Teitelbaum, H., Moustaoui, M., Basdevant, C., and Holton, J. R.: An alternative mechanism 15 explaining the hygropause formation in tropical regions, Geophys. Res. Lett., 27, 221-224,
    • for the simultaneous measurement of H2O and HNO3 content of stratospheric cirrus clouds,
    • Opt. Laser. Eng., 37, 459-480, 2002. 20 Vaughan, G., Shiller, C., Mackenzie, A. R., Bower, K., Peter, T., Schlager, H., Harris, N. R.
    • P., and May, P. T.: SCOUT-O3/ACTIVE: High altitude aircraft measurements around deep
    • tropical convection, Bul. Am. Meterol. Soc., 2007, accepted 2 August 2007.
    • V.: In situ Tracer Measurements in the Tropical Tropopause Region During APE-THESEO, 25 Eur. Comm. Air Pollut. Res. Report 73, 661-664, 2000.
    • 272, 1763-1768, 1996. 30 Vomel, H, Oltmans, S. J., Kley, D., and Crutzen, P.: New evidence for the stratospheric dehy-
    • dration mechanism in the equatorial Pacific, Geophys. Res. Lett., 22, 3235-3238, 1995.
    • Waco, D. E.: Temperatures and turbolence at tropopause levels over hurricane Beulah (1967),
    • Mon. Wea. Rev., 98, 749-755, 1970.
    • tropopause transport of water vapor in midlatitudes, J. Geophys. Res., 108(D6), 4194,
    • doi:10.1029/2002JD002581, 2003.
    • Yushkov, V., Oulanovsky, A., Lechenuk, N., Rudakov, I., Arshinov, K., Tikhonov, F., Stefanutti, 5 L., Ravegnani, F., Bonafe, U., and Georgiadis, T.: Achemilumineschent Analyser for strato-
    • spheric Measurements of the Ozone Concentration (FOZAN), J. Atmos. Oc. Tech., 16, 1345-
    • Tropopause Transport of Water Vapor in Midlatitudes, J. Geophys. Res., 108(D6), 4194, 10 doi:10.1029/2003JD002581, 2003.
    • and clouds, edited by: Wang, J., Wu, B., Ogawa, T., Guans, Z.-H., Proc. SPIE, 3501, 439-
    • 445, 1998. 15 Zou, X. and Wu, Y: On the relationship between Total Ozone Mapping Spectrometer (TOMS)
    • ozone and hurricanes, J. Geophys. Res. 110, D06109, 2005.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.