Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
E. I. Jassim (2015)
Publisher: Copernicus Publications
Journal: Mechanical Sciences
Languages: English
Types: Article
Subjects: TA401-492, Materials of engineering and construction. Mechanics of materials
Spiral coil offers a substantial amount of heat transfer area at a considerably low cost as it does not only have a lower wall resistance but it also achieves a better heat transfer rate in comparison to conventional U-tube arrangement. The general aim of the study is to assess different configurations of spiral coil heat exchangers that can eventually operate in a highly efficient manner.

The paper documents the transient behavior of spiral-shaped tubes when the coil is embedded in a rectangular conducting slab. Different arrangements and number of turns per unit length, with fixed volumes, are considered in order to figure out the optimal configuration that maximizes the performance of the heat transfer. The implementation presented in the study is conducted to demonstrate the viability of the use of a large conducting body as supplemental heat storage.

The system uses flowing water in the coil and stagnant water in the container. The copper-made coils situated in the center of the slab carries the cold fluid while the container fluid acts as a storage-medium. The water temperature at several depths of the container was measured to ensure uniformity in the temperature distribution of the container medium. Results have shown that the coil orientation, the number of loops, and the Reynolds number, substantially influence the rate of the heat transfer. The vertically-embedded spiral coil has a better performance than the horizontally-embedded spiral coil. Doubling the number of loops is shown to enhance the performance of the coil. Increasing Reynolds Number leads to better coil performance.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article