LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Florou, Kalliopi; Papanastasiou, Dimitrios K.; Pikridas, Michael; Kaltsonoudis, Christos; Louvaris, Evangelos; Gkatzelis, Georgios I.; Patoulias, David; Mihalopoulos, Nikolaos; Pandis, Spyros N. (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: Chemistry, QD1-999, Physics, QC1-999
The composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns, one conducted in 2013 and the other in 2012. A major goal of this study is to quantify the sources of organic aerosol (OA) and especially residential wood burning, which has dramatically increased due to the Greek financial crisis. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at both sites. PM with diameter less than 1 µm (PM1) consisted mainly of organics (60–75 %), black carbon (5–20 %), and inorganic salts (around 20 %) in both Patras and Athens. In Patras, during evening hours, PM1 concentrations were as high as 100 µg m−3, of which 85 % was OA. In Athens, the maximum hourly value observed during nighttime was 140 µg m−3, of which 120 µg m−3 was OA. Forty to 60 % of the average OA was due to biomass burning for both cities, while the remaining mass originated from traffic (12–17 %), cooking (12–16 %), and long-range transport (18–24 %). The contribution of residential wood burning was even higher (80–90 %) during the nighttime peak concentration periods, and less than 10 % during daytime. Cooking OA contributed up to 75 % during mealtime hours in Patras, while traffic-related OA was responsible for 60–70 % of the OA during the morning rush hour.

Share - Bookmark

Funded by projects

Cite this article