Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, J.; Liang, Z.; Han, C. J.; Zhang, H. (2015)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: TA401-492, Materials of engineering and construction. Mechanics of materials
Reverse fault movement is one of the threats for the structural integrity of buried oil-gas pipelines caused by earthquakes. Buckling behavior of the buried pipeline was investigated by finite element method. Effects of fault displacement, internal pressure, diameter-thick ratio, buried depth and friction coefficient on buckling behavior of the buried steel pipeline were discussed. The results show that internal pressure is the most important factor that affecting the pipeline buckling pattern. Buckling mode of non-pressure pipeline is collapse under reverse fault. Wrinkles appear on buried pressure pipeline when the internal pressure is more than 0.4 Pmax. Four buckling locations appear on the buried pressure pipeline under bigger fault displacement. There is only one wrinkle on the three locations of the pipeline in the rising formation, but more wrinkles on the fourth location. Number of the wrinkle ridges and length of the wavy buckling increase with the increasing of friction coefficient. Number of buckling location decreases gradually with the decreasing of diameter-thick ratio. A protective device of buried pipeline was designed for preventing pipeline damage crossing fault area for its simple structure and convenient installation. Those results can be used to safety evaluation, maintenance and protection of buried pipelines crossing fault area.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article