Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
A. Korth; G. Paschmann; M.B. Bavassano-Cattaneo; H. Rème; Y. Hobara; R. Lundin; H. Nilsson; M. Yamauchi; S. Arvelius; L. M. Kistler; G. K. Parks (2005)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, Science, Physics, QC1-999, QC801-809

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Earth and Planetary Astrophysics, Astrophysics::High Energy Astrophysical Phenomena
International audience; The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE) and high-latitude (from 70 to ~90 deg invariant latitude, ILAT) polar region. The principal results are: (1) Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2) at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft); (3) however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region.

Keywords. Magnetospheric physics (Magnetospheric configuration and dynamics, Solar wind-magnetosphere interactions)

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andre´, M. and Yau, A. W.: Theories and observations of ion energization and outflow in the high latitude magnetosphere, Space Sci. Rev., 80, 27-48, 1997.
    • Blanc, M., Horwitz, J. L., Blake, J. B., Daglis, I., Lemaire, J. F., Moldwin,M. B., Orsini, S., Thorne, R. M., and Wolfe, R. A.: Source and Loss Processes in the Inner Magnetosphere, Chapter 4. of Magnetospheric Plasma Sources and Losses (Hultqvist, B., Øieroset, M., Paschmann, G., and Treumann, R. (Eds.)), Space Science Reviews, Vol. 88, Nos. 1-2, 1999.
    • Bouhram, M., Klecker, B., Paschmann, G., Re`me, H., Bla˘ga˘u, A., Kister,L., Puhl-Quinn, P., and Sauvaud, J.-A.: Multipoint analysis of the spatio-temporal coherence of dayside O+ outflows with Cluster, Ann. Geophys., 22, 2507-2514, 2004, SRef-ID: 1432-0576/ag/2004-22-2507.
    • Cladis, J. B.: Parallel acceleration and transport of ions from polar ionosphere to plasma sheet, Geophys. Res. Lett., 13, 893-896, 1986.
    • Cladis, J. B., Collin, H. L., Lennartsson, O. W., Moore, T. E., Peterson, W. K., and Russell, C. T.: Observation of centrifugal acceleration during compression of magnetosphere, Geophys. Res. Lett., 27, 915-918, 2000.
    • Cully, C. M., Donovan, E. F., Yau, A. W., and Arkos, G. G.: Akebono/Suprathermal Mass Spectrometer observations of lowenergy ion outflow: Dependence on magnetic activity and solar wind conditions, J. Geophys. Res., 108, 1093-1103, doi:10.1029/2002JA009587, 2003.
    • Eklund, U., Lundin, R., and Sandahl, I.: Measurements of O+ in the high latitude magnetosheath, Phys. Chem. Earth., 22, 639-644, 1997.
    • Eliasson, L., Andre´, M., Lundin, R., Pottelette, R., Marklund, G., and Holmgren, G.: Observations of electron conics by the Viking satellite, J. Geophys. Res., 101, 13 225-13 238, 1996.
    • Guglielmi, A. and Lundin, R.: Ponderomotive upward acceleration of ions by ion cyclotron and Alfve´n waves over the polar regions, J. Geophys. Res., 106, 13 219-13 236, 2001.
    • Ho, C. W., Horwitz, J. L., and Moore, T. E.: DE1 observation of polar O+ stream bulk parameters and comparison with a model of the centrifugally-accelerated polar wind, Geophys. Res. Lett., 21, 2459-2462, 1994.
    • Hobara, Y., Nilsson, H., Arvelius, S., Lundin, R., Sundkvist, D., Andre´, M., Cornilleau-Wehrlin, N., et al.: Cluster observation of high altitude oxygen outflow burst and associated wave activities, EGU General Assembly (abstract), 2005.
    • Horwitz, J. L., Ho, C. W., Scarbro, H. D., Wilson, G. R., and Moore, T. E.: Centrifugal acceleration of the polar wind, J. Geophys. Res., 99, 15 051-15 064, 1994.
    • Joko, S., Nilsson, H., Lundin, R., Popielwaska, B., Re`me, H., Bavassano-Cattaneo, M., Paschmann, G., Korth, A., Kistler, L., and Parks, G.: Shell-like configuration in O+ ion velocity distribution at high altitudes in the dayside magnetosphere observed by CIS/Cluster, Ann. Geophys., 22, 2473-2483, 2004, SRef-ID: 1432-0576/ag/2004-22-2473.
    • Lundin, R. and Hultqvist, B.: Ionospheric plasma escape by highaltitude electric fields: Magnetic moment “pumping”, J. Geophys. Res., 94, 6665-6680, 1989.
    • Lundin, R., Woch, J., Yamauchi, M., and Marklund, G.: Boundary layer polarization and voltage in the 14MLT region, J. Geophys. Res., 100, 7587-7597, 1995.
    • Lundin, R., Barabash, S., Andersson, H., Holmstro¨m, M., Grigoriev, A., Yamauchi, M., et al.: Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express, Science, 305, 24 September 2004.
    • Moore, T. E., Lundin, R., Alcayde, D., Andre´, M., Ganguli, S. B., Temerin, M., Yau, A.: Source Processes in the High-Latitude Ionosphere, Chapter 2. of Magnetospheric Plasma Sources and Losses (Bengt Hultqvist, Marit Øieroset, Goetz Paschmann and Rudolf Treumann (Eds.)), Space Science Reviews, Vol. 88, 1-2, 1999a.
    • Moore, T. E., Peterson, W. K., Russell, C. T., Chandler, M. O., Collier, M. R., Collin, H. L., Craven, P. D., Fitzenreiter, R., Giles, B. L., and Pollock, C. J.: Ionospheric mass ejection in response to a coronal mass ejection, Geophys. Res. Lett., 26, 2339-2342, 1999b.
    • Nilsson, H., Joko, S., Lundin, R., Re`me, H., Sauvaud, J.-A., Dandouras, I., Balogh, A., Carr, C., Kistler, L. M., Klecker, B., Carlson, C. W., Bavassano-Cattaneo, M. B., Korth, A.: The structure of high altitude O+ energization and outflow: a case study, Ann. Geophys., 22, 2497-2506, 2004, SRef-ID: 1432-0576/ag/2004-22-2497.
    • Norqvist, P., Andre´, M., and Tryland, M.: A statistical study of ion energization mechanisms in the auroral region, J. Geophys. Res., 103, 23459-23474, 1998.
    • Re`me, H., Aoustin, C., Bosqued, J. M., et al.: First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303-1354, 2001, SRef-ID: 1432-0576/ag/2001-19-1303.
    • Russell, C. T., Zhou, X. W., Chi, P. J., Kawano, H., Moore, T. E., Peterson,W. K., Cladis, J. B. and Singer, H. J.: Sudden Compression of the outer Magnetosphere associated with an ionospheric mass ejection, Geophys. Res. Lett., 26, 2343-2346, 1999.
    • Seki, K., Elphic, R. C., Thomsen, M. F., Bonnell, J., McFadden, J. P., Lund,E. J., Hirahara, M., Terasawa, T., and Mukai, T.: A new perspective on plasma supply mechanisms to the magnetotail from a statistical comparison of dayside mirroring O+ at low altitudes with lobe/mantle beams, J. Geophys. Res., 107, 1047- 1058, doi.10.1029/2001JA900122, 2002.
    • Yau, A. W. and Andre´, M.: Sources of ion outflow in the high latitude ionosphere, Space Sci. Rev., 80, 1-25, 1997.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.