Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
C. Marty; S. Schlögl; M. Bavay; M. Lehning (2017)
Publisher: Copernicus Publications
Journal: The Cryosphere
Languages: English
Types: Article
Subjects: GE1-350, QE1-996.5, Environmental sciences, Geology
This study focuses on an assessment of the future snow depth for two larger Alpine catchments. Automatic weather station data from two diverse regions in the Swiss Alps have been used as input for the Alpine3D surface process model to compute the snow cover at a 200 m horizontal resolution for the reference period (1999–2012). Future temperature and precipitation changes have been computed from 20 downscaled GCM-RCM chains for three different emission scenarios, including one intervention scenario (2 °C target) and for three future time periods (2020–2049, 2045–2074, 2070–2099). By applying simple daily change values to measured time series of temperature and precipitation, small-scale climate scenarios have been calculated for the median estimate and extreme changes. The projections reveal a decrease in snow depth for all elevations, time periods and emission scenarios. The non-intervention scenarios demonstrate a decrease of about 50 % even for elevations above 3000 m. The most affected elevation zone for climate change is located below 1200 m, where the simulations show almost no snow towards the end of the century. Depending on the emission scenario and elevation zone the winter season starts half a month to 1 month later and ends 1 to 3 months earlier in this last scenario period. The resulting snow cover changes may be roughly equivalent to an elevation shift of 500–800 or 700–1000 m for the two non-intervention emission scenarios. At the end of the century the number of snow days may be more than halved at an elevation of around 1500 m and only 0–2 snow days are predicted in the lowlands. The results for the intervention scenario reveal no differences for the first scenario period but clearly demonstrate a stabilization thereafter, comprising much lower snow cover reductions towards the end of the century (ca. 30 % instead of 70 %).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abegg, B., Agrawala, S., Crick, F., and de Montfalcon, A.: Climate change impacts and adaptation in winter tourism, in: Climate Change in the European Alps, edited by: Agrawala, S., OECD, Paris, France, 25-60, 2007.
    • Bartolini, E., Claps, P., and D'Odorico, P.: Interannual variability of winter precipitation in the European Alps: relations with the North Atlantic Oscillation., Hydrol. Earth Syst. Sci., 13, 17-25, doi:10.5194/hess-13-17-2009, 2009.
    • Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135-3151, doi:10.5194/gmd-7-3135-2014, 2014.
    • Bavay, M., Lehning, M., Jonas, T., and Löwe, H.: Simulations of future snow cover and discharge in Alpine headwater catchments, Hydrol. Process., 23, 95-108, doi:10.1002/hyp.7195, 2009.
    • Bavay, M., Grünewald, T., and Lehning, M.: Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland, Adv. Water Resour., 55, 4-16, 2013.
    • Beniston, M. and Stoffel, M.: Assessing the impacts of climatic change on mountain water resources, Sci. Total Environ., 493, 1129-1137, doi:10.1016/j.scitotenv.2013.11.122, 2014.
    • Bossard, M., Feranec, J., and Otahel, J.: CORINE land cover technical guide: Addendum 2000, European Environment Agency, Copenhagen, Denmark, 2000.
    • Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the role of natural variability in future North American climate, Supplement, Nat. Clim. Change, 2, 775-779, doi:10.1038/nclimate1562, 2012.
    • Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Merindol, L., and Lesaffre, B.: Reanalysis of 47 Years of Climate in the French Alps (1958-2005): Climatology and Trends for Snow Cover, J. Appl. Meteorol. Clim., 48, 2487-2512, 2009.
    • Elsasser, H. and Bürki, R.: Climate change as a threat to tourism in the Alps, Clim. Res., 20, 253-257, 2002.
    • Fischer, A. M., Weigel, A. P., Buser, C. M., Knutti, R., Künsch, H. R., Liniger, M. A., Schär, C., and Appenzeller, C.: Climate change projections for Switzerland based on a Bayesian multi-model approach, Int. J. Climatol., 32, 2348- 2371, doi:10.1002/joc.3396, 2012.
    • Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.: 21st century climate change in the European Alps-A review, Sci. Total Environ., 493, 1138-1151, doi:10.1016/j.scitotenv.2013.07.050, 2014.
    • Grünewald, T. and Lehning, M.: Are flat-field snow depth measurements representative? A comparison of selected index sites with areal snow depth measurements at the small catchment scale, Hydrol. Process., 29, 1717-1728, doi:10.1002/hyp.10295, 2015.
    • Haberkorn, A., Hoelzle, M., Phillips, M., and Kenner, R.: Snow as a driving factor of rock surface temperatures in steep rough rock walls, Cold Reg. Sci. Technol., 118, 64-75, doi:10.1016/j.coldregions.2015.06.013, 2015.
    • Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., GärtnerRoer, I., Gruber, S., Isaksen, K., Kneisel, C., Krautblatter, M., and Phillips, M.: Mountain permafrost: development and challenges of a young research field, J. Glaciol., 56, 1043-1058, doi:10.3189/002214311796406121, 2010.
    • Hess, M., Saska, M., and Schilling, K.: Application of coordinated multi-vehicle formations for snow shoveling on airports, Intelligent Service Robotics, 2, 205-217, doi:10.1007/s11370-009- 0048-5, 2009.
    • Holmes, C. R., Woollings, T., Hawkins, E., and Vries, H. d.: Robust Future Changes in Temperature Variability under Greenhouse Gas Forcing and the Relationship with Thermal Advection, J. Climate, 29, 2221-2236, doi:10.1175/jcli-d-14-00735.1, 2016.
    • Kotlarski, S., Lüthi, D., and Schär, C.: The elevation dependency of 21st century European climate change: an RCM ensemble perspective, Int. J. Climatol., 35, 3902-3920, doi:10.1002/joc.4254, 2015.
    • Laghari, A. N., Vanham, D., and Rauch, W.: To what extent does climate change result in a shift in Alpine hydrology? A case study in the Austrian Alps, Hydrolog. Sci. J., 57, 103-117, doi:10.1080/02626667.2011.637040, 2012.
    • Lehning, M., Voelksch Ingo, I., Gustafsson, D., Nguyen, T. A., Staehli, M., and Zappa, M.: ALPINE3D: A detailed model of mountain surface processes and its application to snow hydrology, Hydrol. Process., 20, 2111-2128, 2006.
    • Linsbauer, A., Paul, F., Machguth, H., and Haeberli, W.: Comparing three different methods to model scenarios of future glacier change in the Swiss Alps, Ann. Glaciol., 54, 241-253, 2013.
    • Mankin, J. and Diffenbaugh, N.: Influence of temperature and precipitation variability on near-term snow trends, Clim. Dynam., 45, 1099-1116, doi:10.1007/s00382-014-2357-4, 2015.
    • Marke, T., Strasser, U., Hanzer, F., Stötter, J., Wilcke, R. A. I., and Gobiet, A.: Scenarios of Future Snow Conditions in Styria (Austrian Alps), J. Hydrometeorol., 16, 261-277, doi:10.1175/jhm-d14-0035.1, 2014.
    • Marty, C.: Regime shift of snow days in Switzerland, Geophys. Res. Lett., 35, L12501, doi:10.1029/2008gl033998, 2008.
    • Marty, C., Tilg, A.-M., and Jonas, T.: Recent evidence of large scale receding snow water equivalents in the European Alps, J. Hydrometeorol., doi:10.1175/jhm-d-16-0188.1, in press, 2017.
    • Nakicenovic, N. and Swart, R. (Eds.): Special report on emissions scenarios, Cambridge University Press, Cambridge, UK, 612 pp., 2000.
    • Norrman, J., Eriksson, M., and Lindqvist, S.: Relationships between road slipperiness, traffic accident risk and winter road maintenance activity, Clim. Res., 15, 185-193, 2000.
    • Oerlemans, J., Giesen, R. H., and Van Den Broeke, M. R.: Retreating alpine glaciers: Increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland, J. Glaciol., 55, 729- 736, doi:10.3189/002214309789470969, 2009.
    • Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Le Quere, C., Marland, G., Raupach, M. R., and Wilson, C.: The challenge to keep global warming below 2 C, Supplement, Nat. Clim. Change, 3, 4-6, doi:10.1038/nclimate1783, 2013.
    • Rousselot, M., Durand, Y., Giraud, G., Mérindol, L., DombrowskiEtchevers, I., Déqué, M., and Castebrunet, H.: Statistical adaptation of ALADIN RCM outputs over the French Alps - application to future climate and snow cover, The Cryosphere, 6, 785- 805, doi:10.5194/tc-6-785-2012, 2012.
    • Scherrer, S. C., Appenzeller, C., and Laternser, M.: Trends in Swiss Alpine snow days: The role of local- and largescale climate variability, Geophys. Res. Lett., 31, L13215, doi:10.1029/2004GL020255, 2004.
    • Schlögl, S., Marty, C., Bavay, M., and Lehning, M.: Sensitivity of Alpine3D modeled snow cover to modifications in DEM resolution, station coverage and meteorological input quantities, Environ. Modell. Softw., 83, 387-396, doi:10.1016/j.envsoft.2016.02.017, 2016.
    • Schmidlin, T. W.: Impacts of Severe Winter Weather during December 1989 in the Lake Erie Snowbelt, J. Climate, 6, 759- 767, doi:10.1175/1520-0442(1993)006<0759:ioswwd>2.0.co;2, 1993.
    • Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Simulations of 21st century snow response to climate change in Switzerland from a set of RCMs, Int. J. Climatol., 35, 3262-3273, doi:10.1002/joc.4205, 2015.
    • Schmucki, E., Marty, C., Lehning, M., Fierz, C., and Weingartner, R.: Impact of climate change in Switzerland on socioeconomic snow indices, Theor. Appl. Climatol., 127, 875-889, doi:10.1007/s00704-015-1676-7, 2017.
    • Serquet, G., Marty, C., Dulex, J., and Rebetez, M.: Seasonal trends and temperature dependence of the snowfall/precipitationday ratio in Switzerland, Geophys. Res. Lett., 38, L07703, doi:10.1029/2011GL046976, 2011.
    • Steger, C., Kotlarski, S., Jonas, T., and Schär, C.: Alpine snow cover in a changing climate: A regional climate model perspective, Clim. Dynam., 41, 735-754, 2013.
    • Valt, M. and Cianfarra, P.: Recent snow cover variability in the Italian Alps, Cold Reg. Sci. Technol., 64, 146-157, 2010.
    • Van der Linden, P. and Mitchell, J. (Eds.): ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 160 pp., 2009.
    • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.- F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5-31, doi:10.1007/s10584-011- 0148-z, 2011.
    • Viviroli, D., Zappa, M., Gurtz, J., and Weingartner, R.: An introduction to the hydrological modelling system PREVAH and its preand post-processing-tools, Environ. Modell. Softw., 24, 1209- 1222, 2009.
    • Wilhelm, C., Wiesinger, T., Bründl, M., and Ammann, W.: The avalanche winter 1999 in Switzerland-an overview, Proceedings International Snow Science Workshop, 1-6 October 2000, Big Sky, Montana, USA, 487-494, 2001.
    • Zubler, E. M., Fischer, A. M., Liniger, M. A., Croci-Maspoli, M., Scherrer, S. C., and Appenzeller, C.: Localized climate change scenarios of mean temperature and precipitation over Switzerland, Climatic Change, 125, 237-252, doi:10.1007/s10584-014- 1144-x, 2014.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article