LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hatté, Christine; Rousseau, Denis-Didier; Guiot, Joel (2009)
Publisher: European Geosciences Union (EGU)
Languages: English
Types: Article
Subjects: paleoclimates, [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, pollen, inverse modeling, vegetation, [SDE.MCG] Environmental Sciences/Global Changes, carbon isotopes
An improved inverse vegetation model has been designed to better specify both temperature and precipitation estimates from vegetation descriptions. It is based on the BIOME4 vegetation model and uses both vegetation δ13C and biome as constraints. Previous inverse models based on only one of the two proxies were already improvements over standard reconstruction methods such as the modern analog since these did not take into account some external forcings, for example CO2 concentration.

This new approach makes it possible to describe a potential "isotopic niche" defined by analogy with the "climatic niche" theory. Boreal and temperate biomes simulated by BIOME4 are considered in this study. We demonstrate the impact of CO2 concentration on biome existence domains by replacing a "most likely biome" with another with increased CO2 concentration. Additionally, the climate imprint on δ13C between and within biomes is shown: the colder the biome, the lighter its potential isotopic niche; and the higher the precipitation, the lighter the δ13C.

For paleoclimate purposes, previous inverse models based on either biome or δ13C did not allow informative paleoclimatic reconstructions of both precipitation and temperature. Application of the new approach to the Eemian of La Grande Pile palynological and geochemical records reduces the range in precipitation values by more than 50% reduces the range in temperatures by about 15% compared to previous inverse modeling approaches. This shows evidence of climate instabilities during Eemian period that can be correlated with independent continental and marine records.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Austin, M. P.: Continuum concept, ordination methods, and niche theory, Annu. Rev. Ecol. Sys., 16(1), 39-61, 1985.
    • Balesdent, J., Girardin, C., and Mariotti, A.: Site-related δ13C of tree leaves and soil organic matter in a temperate forest, Ecology, 74(6), 1713-1721, 1993.
    • Bartlein, P., Prentice, I. C., and Webb III, T.: Climatic response surfaces based on pollen from some eastern North America taxa, J. Biogeogr., 13, 35-57, 1986.
    • Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhin, A. V., Matveyeva, N. V., Murray, D. F., McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M. F. J., and Volkova, V. S.: Climate change and Artic ecosystems: 1. Vegetation changes north of 55◦ N between the last glacial maximum, mid-Holocene, and present, J. Geophys. Res., 108(D19), 8170, doi:10.1029/2002JD002558, 2003.
    • Boom, A., Marchant, R., Hooghiemstra, H., and Sinninghe Damste´, J. S.: CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2, Palaeogeogr. Palaeocl., 177(1-2), 151-168, 2002.
    • Cowling, S. A. and Sykes, M. T.: Physiological significance of low atmospheric CO2 for plant-climate interactions, Quaternary Res., 52(2), 237-242, 1999.
    • Davis, B. A. S., Brewer S., Stevenson A. C., Guiot, J. and data contributors: The temperature of Europe during the Holocene reconstructed from pollen data, Quat.Sci. Rev., 22, 1701-1716, 2003.
    • Farquhar, G. D.: Carbon dioxide and vegetation, Science, 278, p. 1411, doi:10.1126/science.278.5342.1411, 1997.
    • Feng, X. and Epstein, S.: Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration, Geochim. Cosmochim. Ac., 59(12), 2599-2608, 1995.
    • Frank, N., Braum, M., Hambach, U., Mangini, A., and Wagner, G.: Warm period growth of travertine during the last interglaciation in Southern Germany, Quaternary Res., 54, 38-48, 2000.
    • Garten, C. T. J. and Taylor, G. E. J.: Foliar δ13C within a temperate deciduous forest: spatial, temporal, and species sources of variation, Oecologia, 90, 1-7, 1992.
    • Gauthier C. and Hatte´, C.: Effects of handling, storage and chemical treatments on δ13C values of continental sediments. Geophysics, Geochem. Geosyst., 9(8), Q08011, doi:10.1029/2008GC001967, 2008.
    • Grinnell, J.: Field tests of theories concerning distributional control, Am. Nat., 51, 115-128, 1917.
    • Grinnell, J.: Geography and evolution, Ecology, 5, 225-229, 1924.
    • Guiot, J., Pons, A., de Beaulieu, J.-L., and Reille, M. A.: 140000-year continental climate reconstruction from two European pollen records, Nature, 338, 309-313, 1989.
    • Guiot, J., Torre, F., Cheddadi, R., Peyron, O., Tarasov, P. E., Jolly, D., and Kaplan, J. O.: The climate of the Mediterranean Basin and of Eurasia of the last glacial maximum as reconstructed by inverse vegetation modelling and pollen data, Ecologia Mediterranea, 25(2), 193-204, 1999.
    • Guiot, J., Torre, F., Jolly, D., Peyron, O., Boreux, J. J., and Cheddadi, R.: Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under changed precipitation seasonality and CO2 conditions: application to glacial climate in Mediterranean region, Ecol. Model., 127, 119-140, 2000.
    • Hastings, W. K.: Monte-Carlo sampling methods using Markov chains and their application, Biometrika, 57, 97-109, 1970.
    • Hatte´, C. and Guiot, J.: Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: application to the Nussloch loess sequence (Rhine Valley, Germany), Clim. Dynam., 25(2-3), 315-327, 2005.
    • Haxeltine, A. and Prentice, I. C.: BIOME 3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types, Global Biogeochem. Cy., 10(4), 693-709, 1996.
    • Heinrich, H.: Origin and consequences of cyclic ice rafting in the North-east Atlantic Ocean during the past 13000 years, Quaternary Res., 29, 143-152, 1988.
    • Howe, S. and Webb III, T.: Calibrating pollen data in climatic terms: Improving the methods, Quaternary Sci. Rev., 2(1), 17-51, 1983.
    • Imbrie, J. and Kipp, N.: A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene. In The Late Cenozoic Glacial Ages, Yale University Press, 1971.
    • Kaplan, J. O.: Geophysical applications of vegetation modelling, Ph-D, Lund University, 2001.
    • Kaplan, J. O., Bigelow, N. H., Prentice, I. C., Harrison, S. P., Bartlein, P. J., Christensen, T. R., Cramer, W., Matveyeva, N. V., McGuire, A. D., Murray, D. F., Razzhivin, V. Y., Smith, B., Walker, D. A., Anderson, P. M., Andreev, A. A., Brubaker, L. B., Edwards, M. E., and Lozhkin, A. V.: Climate change and Arctic ecosystems: 2: Modeling, paleodata-model comparisons, and future projections, J. Geophys. Res., 108(D19), 8171, doi:10.1029/2002JD002559, 2003.
    • Kaplan, J. O., Prentice, I. C., and Buchmann, N.: The stable carbon isotope composition of the terrestrial biosphere: modeling at scales from the leaf to the globe, Global Biogeochem. Cy., 16(4), 1060, doi:10.1029/2001GB001403, 2002.
    • Lloyd, J. and Farquhar, G. D.: 13C discrimination during CO2 assimilation by the terrestrial biosphere, Oecologia, 99, 201-215, 1994.
    • McManus, J., Bond, G. C., Broecker, W., Johnsen, S. J., Labeyrie, L. D., and Higgins, S.: High-resolution climate records from the North-Atlantic during the last interglacial, Nature, 371, 326-329, 1994.
    • McManus, J. F., Oppo, D. W., Keigwin, L. D., Cullen, J. L., and Bond, G. C.: Thermohaline circulation and prolonged interglacial warmth in the North Atlantic, Quaternary Res., 58(1), 17-21, 2002.
    • Nguyen Tu, T. T., Derenne, S., Largeau, C., Bardoux, G., and Mariotti, A.: Diagenesis effects on specific carbon isotope composition of plant n-alkanes, Org. Geochem., 35, 317-329, 2004.
    • Overpeck, J., Webb III, T., and Prentice, I. C.: Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and of modern analogs, Quaternary Res., 23, 87-108, 1985.
    • Pasquier-Cardin, A., Allard, P., Ferreira, T., Hatte´, C., Coutinho, R., Fontugne, M., and Jaudon, M.: Magma-derived CO2 emissions recorded in C-14 and C-13 content of plants growing in Furnas caldera, Azores, J. Volcanol. Geoth. Res., 92(1-2), 195- 207, 1999.
    • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V., Lorius, C., Pe´pin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436, 1999.
    • Polley, W. H., Johnson, H. B., Marino, B. D., and Mayeux, H. S.: Increase in C3-plant water-use efficiency and biomass over glacial to present CO2 concentrations, Nature, 361, 61-64, 1993.
    • Poole, I., van Bergen, P. F., Kool, J., Schouten, S., and Cantrill, D. J.: Molecular isotopic heterogeneity of fossil organic matter: implications for δ13C biomass and δ13C palaeoatmosphere proxies, Organic Chemistry, 35, 1261-1274, 2004.
    • Prentice, I. C., Cramer, W., Harrison, S., Leemans, R., Monserud, R. A., and Solomon, A. M.: A global biome model based on plant physiology and dominance, soil properties and climate, J. Biogeogr., 19(2), 117-134, 1992.
    • Rousseau, D. D., Hatte´, C., Guiot, J., Duzer, D., Schevin, P., and Kukla, G.: Reconstruction of the Grande Pile Eemian using invers modeling of biomes and δ13C, Quaternary Sci. Rev., 25, 2806-2819, 2006a.
    • Rousseau, D. D., Kukla, G., and McManus, J.: What is what in the ice and the ocean?, Quaternary Sci. Rev., 25(17-18), 2025-2030, 2006b.
    • Sabatier, R. and Van Campo, M.: L'analyse en composantes principales de variables instrumentales applique´e a` l'estimation des pale´oclimats de la Gre`ce, il y a 18000 ans, Actualite´s botaniques, 131(2-4), 85-96, 1984.
    • Sanchez-Goni, M. F., Loutre, M. F., Crucifix, M., Peyron, O., Santos, L., Duprat, J., Malaize, B., Turon, J. L., and Peypouquet, J. P.: Increasing vegetation and climate gradient in Western Europe over the Last Glacial Inception (122-110 ka): data-model comparison, Earth Planet. Sc. Lett., 231, 111-130, 2005.
    • Schmitt, J. and Fischer, H.: A new micro sublimation technique for high-precision δ13CO2 analysis of ice cores: Instrumental set-up and first results, in: DEKLIM: “The climate of the next millennia in the perspective of abrupt climate change during the Late Pleistocene”, University of Mainz, Germany, 2005.
    • Shackleton, N. J., Chapman, M., Sanchez-Goni, M. F., Pailler, D., and Lancelot, Y.: The classic marine isotope substage 5e, Quaternary Res., 58(1), 14-16, 2002.
    • van Bergen, P. F. and Poole, I.: Stable carbon isotopes wood: a clue of palaeoclimate?, Palaeogeogr. Palaeocl., 182, 31-45, 2002.
    • van de Water, P. K., Leavitt, S. W., and Betancourt, J. L.: Leaf δ13C variability with elevation, slope aspect, and precipitation in the southwest United States, Oecologia, 132, 332-343, 2002.
    • Webb III, T. and Bryson, R. A.: Late- and postglacial climatic change in the northern Midwest, USA: Quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis, Quaternary Res., 2(1), 70-115, 1972.
    • Woillard, G.: Grande Pile Peat Bog: A Continuous Pollen Record for the Last 140 000 Years, Quaternary Res., 9, 1-21, 1978.
    • Wu, H. B., Guiot, J. L., Brewer, S., and Guo, Z. T.: Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling, Clim. Dynam., 29(2-3), 211-229, 2007.
  • No related research data.
  • No similar publications.