Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
M. Hoffmann; N. Jurisch; J. Garcia Alba; E. Albiac Borraz; M. Schmidt; V. Huth; H. Rogasik; H. Rieckh; G. Verch; M. Sommer; J. Augustin (2017)
Publisher: Copernicus Publications
Journal: Biogeosciences
Languages: English
Types: Article
Subjects: Ecology, QH540-549.5, QE1-996.5, QH501-531, Geology, Life
Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10–30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil–plant–atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution.

To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of ΔSOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) were used. To verify our method, results were compared with ΔSOC observed by soil resampling.

Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of ΔSOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able to reveal small-scale spatial differences and short-term temporal dynamics of ΔSOC.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alberti, G., Delle Vedove, G. D., Zuliani, M., Peressotti, A., Castaldi, S., and Zerbi, G.: Changes in CO2 emissions after crop conversion from continuous maize to alfalfa, Agric. Ecosyst. Environ., 136, 139-147, 2010.
    • Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479-492, 2003.
    • Batjes, N. H. and van Wesemael, B.: Measuring and monitoring soil carbon, in: Soil Carbon: Science, Management and Policy for Multiple Benefits, edited by: Banwart, S. A., Noellemeyer, E., and Milne, E., SCOPE Series 71. CABI, Wallingford, UK, 188- 201, 2015.
    • Berhe, A. A. and Kleber, M.: Erosion, deposition, and the persistence of soil organic matter: mechanistic consideration and problems with terminology, Earth Surf. Proc. Landforms, 38, 908- 912, 2013.
    • Berhe, A. A., Harte, J., Harden, J. W., and Torn, M. S.: The significance of the erosion-induced terrestrial carbon sink, BioScience, 57, 337-346, 2007.
    • Bolinder, M. A., Kätterer, T., Andrén, O., and Parent, L. E.: Estimating carbon inputs to soil in forage-based crop rotations and modeling the effects on soil carbon dynamics in a Swedish longterm field experiment, Can. J. Soil. Sci., 92, 821-833, 2012.
    • Byrne, K. A., Kiely, G., and Leahy, P.: CO2 fluxes in adjacent new and permanent temperate grasslands, Agric. For. Meteorol., 135, 82-92, 2005.
    • Chen, L., Smith, P., and Yang, Y.: How has soil carbon stock changed over recent decades?, Glob. Change Biol., 21, 3197- 3199, 2015.
    • Conant, R. T., Ogle, S. M., Paul, E. A., and Paustian, K.: Measuring and monitoring soil organic carbon stocks in agricultural lands for climate mitigation, Front. Ecol. Environ., 9, 169-173, 2011.
    • Culman, S. W., Snapp, S. S., Green, J. M., and Gentry, L. E.: Shortand long-term labile soil carbon and nitrogen dynamics reflect management and predict corn agronomic performance, Agron. J., 105, 493-502, 2013.
    • Davidson, E. A., Savage, K., Verchot, L. V., and Navarro, R.: Minimizing artifacts and biases in chamber-based measurements of soil respiratio, Agric. For. Meteorol., 113, 21-37, 2002.
    • De Gruijter, J. J., Brus, D. J., Bierkens, M. F. P., and Knotters, M.: Sampling for Natural Resource Monitoring, Springer Verlag, Berlin, 2006.
    • Deumlich, D., Rogasik, H., Hierold, W., Onasch, I., Völker, L., and Sommer, M.: The CarboZALF-D manipulation experiment - experimental design and SOC patterns, Int. J. Environ. Agric. Res., 3, 40-50, 2017.
    • Dobermann, A. R., Walters, D. T., Baker, J. M.: Comment on “Carbon budget of mature no-till ecosystem in north central region of the United States”, Agric. For. Meteorol., 136, 83-84, 2006.
    • Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., and Fiener, P.: Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes, Earth Sci. Rev., 154, 102-122, 2016.
    • Dymond, J. R.: Soil erosion in New Zealand is a net sink of CO2, Earth Surf. Proc. Landforms, 35, 1763-1772, doi:10.1002/esp.2014, 2010.
    • Eickenscheidt, T., Freibauer, A., Heinichen, J., Augustin, J., and Drösler, M.: Short-term effects of biogas digestate and cattle slurry application on greenhouse gas emissions affected by N availability from grasslands on drained fen peatlands and associated organic soils, Biogeosciences, 11, 6187-6207, doi:10.5194/bg-11-6187-2014, 2014.
    • Elsgaard, L., Görres, C., Hoffmann, C. C., Blicher-Mathiesen, G., Schelde, K., and Petersen, S. O.: Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management, Agric. Ecosyst. Environ., 162, 52-67, 2012.
    • Foken, T.: Micrometeorology, Springer Verlag, Berlin, 2008.
    • Ghimire, R., Norton, J. B., and Pendall, E.: Alfalfa-grass biomass, soil organic carbon, and total nitrogen under different management approaches in an irrigated agroecosystem, Plant Soil, 374, 173-184, 2014.
    • Gilmanov, T. G., Soussana, J. F., Aires, L., Allard, V., Ammann, C., Balzarolo, M., Barcza, Z., Bernhofer, C., Campbell, C. L., Cernusca, A., Cescatti, A., Clifton-Brown, J., Dirks, B. O. M., Dore, S., Eugster, W., Fuhrer, J., Gimeno, C., Gruenwald, T., Haszpra, L., Hensen, A., Ibrom, A., Jacobs, A. F. G., Jones, M. B., Lanigan, G., Laurila, T., Lohila, A., Manca, G., Marcolla, B., Nagy, Z., Pilegaard, K., Pinter, K., Pio, C., Raschi, A., Rogiers, N., Sanz, M. J., Stefani, P., Sutton, M., Tuba, Z., Valentini, R., Williams, M. L., and Wohlfahrt, G.: Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis, Agric. Ecosyst. Environ., 121, 93-120, 2007.
    • Gilmanov, T. G., Wylie, B. K., Tieszen, L. L., Meyers, T. P., Baron, V. S., Bernacchi, C. J., Billesbach, D. P., Burba, G. G., Fischer, M. L., Glenn, A. J., Hanan, N. P., Hatfield, J. L., Heuer, M. W., Hollinger, S. E., Howard, D. M., Matamala, R., Prueger, J. H., Tenuta, M., and Young, D. G.: CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: estimates from flux tower measurements, Agric. Ecosyst. Environ., 164, 162-175, 2013.
    • Gomez-Casanovas, N., Anderson-Teixeira, K., Zeri, M., Bernacchi, C. J., DeLucia, E. H.: Gap filling strategies and error in estimating annual soil respiration, Glob. Change Biol., 19, 1941-1952, 2013.
    • Görres, C.-M., Kutzbach, L., and Elsgaard, L.: Comparative modeling of annual CO2 flux of temperate peat soils under permanent grassland management, Agric. Ecosyst. Environ., 186, 64- 76, 2014.
    • Hernandez-Ramirez, G., Hatfield, J. L., Parkin, T. B., Sauer, T. J., and Prueger, J. H.: Carbon dioxide fluxes in corn-soybean rotation in the midwestern U.S.: inter- and intra-annual variations, and biophysical controls, Agric. For. Meteorol., 151, 1831-1842, 2011.
    • Hoffmann, M., Jurisch, N., Borraz, E. A., Hagemann, U., Drösler, M., Sommer, M., and Augustin, J.: Automated modeling of ecosystem CO2 fluxes based on periodic closed chamber measurements: a standardized conceptual and practical approach, Agric. For. Meteorol., 200, 30-45, 2015.
    • Hoffmann, M., Jurisch, N., Garcia Alba, J., Albiac Borraz, E., Schmidt, M., Huth, V., Rogasik, H., Rieckh, H., Verch, G., Sommer, M., and Augustin, J.: Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories, Leibniz Centre for Agricultural Landscape Research (ZALF), doi:10.4228/ZALF.2017.322, 2017.
    • Hollinger, S. E., Bernacchi, C. J., and Meyers, T. P.: Carbon budget of mature no-till ecosystem in north central region of the United States, Agric. For. Meteorol., 130, 59-69, 2005.
    • IUSS Working Group WRB: World reference base for soil resources 2014, International soil classification system for naming soils and creating legends for soil maps, Update 2015, World Soil Resources Reports No. 106, FAO, Rome, 2015.
    • Jans, W. W. P., Jacobs, C. M. J., Kruijt, B., Elbers, J. A., Barendse, S., and Moors, E. J.: Carbon exchange of a maize (Zea mays L.) crop: influence of phenology, Agric. Ecosyst. Environ., 139, 316-324, 2010.
    • Juszczak, R., Humphreys, E., Acosta, M., Michalak-Galczewska, M., Kayzer, D., and Olejnik, J.: Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth, Plant Soil, 366, 505-520, 2013.
    • Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and Nico, P. S.: Chapter one - Mineral-Organic associations: Formation, Properties, and relevance in soil environments, Adv. Agro., 130, 1-140, 2015.
    • Knebl, L., Leithold, G., and Brock, C.: Improving minimum detectable differences in the assessment of soil organic matter change in short-term field experiments, J. Plant Nutr. Soil Sci., 178, 35-42, 2015.
    • Koskinen, M., Minkkinen, K., Ojanen, P., Kämäräinen, M., Laurila, T., and Lohila, A.: Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil, Biogeosciences, 11, 347-363, doi:10.5194/bg-11-347-2014, 2014.
    • Kutsch, W. L., Aubinet, M., Buchmann, N., Smith, P., Osborne, B., Eugster, W., Wattenbach, M., Schrumpf, M., Schulze, E. D., Tomelleri, E., Ceschia, E., Bernhofer, C., Béziat, P., Carrara, A., Di Tommasi, P., Grünwald, T., Jones, M., Magliulo, V., Marloie, O., Moureaux, C., Olioso, A., Sanz, M. J., Saunders, M., Søgaard, H., and Ziegler, W.: The net biome production of full crop rotations in Europe, Agric. Ecosyst. Environ., 139, 336- 345, 2010.
    • Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali, N. J., Martikainen, P. J., Alm, J., and Wilmking, M.: CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression, Biogeosciences, 4, 1005-1025, doi:10.5194/bg4-1005-2007, 2007.
    • Lai, D. Y. F., Roulet, N. T., Humphreys, E. R., Moore, T. R., and Dalva, M.: The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland, Biogeosciences, 9, 3305- 3322, doi:10.5194/bg-9-3305-2012, 2012.
    • Lal, R., Griffin, M., Apt, J., Lave, L., and Morgan, G. M.: Managing Soil carbon, Science, 304, p. 393, 2004.
    • Langensiepen, M., Kupisch, M., van Wijk, M. T., and Ewert, F.: Analyzing transient closed chamber effects on canopy gas exchange for flux calculation timing, Agric. For. Meteorol., 164, 61-70, 2012.
    • Leiber-Sauheitl, K., Fuß, R., Voigt, C., and Freibauer, A.: High CO2 fluxes from grassland on histic Gleysol along soil carbon and drainage gradients, Biogeosciences, 11, 749-761, doi:10.5194/bg-11-749-2014, 2014.
    • Leifeld, J., Ammann, C., Neftel, A., and Fuhrer, J.: A comparison of repeated soil inventory and carbon flux budget to detect soil carbon stock changes after conversion from cropland to grasslands, Glob. Change Biol., 17, 3366-3375, 2011.
    • Leifeld, J., Bader, C., Borraz, E., Hoffmann, M., Giebels, M., Sommer, M., and Augustin, J.: Are C-loss rates from drained peatlands constant over time? The additive value of soil profile based and flux budget approach, Biogeosciences Discuss., 11, 12341- 12373, doi:10.5194/bgd-11-12341-2014, 2014.
    • Livingston, G. P. and Hutchinson, G. L.: Enclosure-based measurement of trace gas exchange: applications and sources of error, in: Methods in Ecology. Biogenic Trace Gases: Measuring Emissions from Soil and Water, edited by: Matson, P. A. and Harris, R. C., Blackwell Science, Oxford, UK, 14-51, 1995.
    • Lloyd, J. and Taylor, J. A.: On the temperature dependence of soil respiration, Funct. Ecol., 8, 315-323, 1994.
    • Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J., McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra, C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y. P., West, T. O., Wie, Y., Wieder, W. R., Xia, J., Xu, X., Xu, X., and Zhou, T.: Toward more realistic projections of soil carbon dynamics by Earth system models, Global Biogeochem. Cy., 30, 40-56, 2016.
    • Moffat, A. M., Papale D., Reichstein M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J., Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes, Agric. For. Meteorol., 147, 209-232, 2007.
    • Necpálová, M., Anex Jr., R. P., Kravchenko, A. N., Abendroth, L. J., Del Grosso, S. J., Dick, W. A., Helmers, M. J., Herzmann, D., Lauer, J. G., Nafziger, E. D., Sawyer, J. E., Scharf, P. C., Strock, J. S., and Villamil, M. B.: What does it take to detect a change in soil carbon stock? A regional comparison of minimum detectable difference and experiment duration in the north central United States, J. Soils Water Conserv., 69, 517-531, 2014.
    • Paustian, K., Collins, H. P., and Paul, E. A.: Management controls on soil carbon, in: Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America, edited by: Paul, E. A., Paustian, K., Elliott, E. T., and Cole, C. V., CRC Press, Boca Raton, FL, 15-50, 1997.
    • Poeplau, C., Bolinder, M. A., and Kätterer, T.: Towards an unbiased method for quantifying treatment effects on soil carbon in long-term experiments considering initial within-field variation, Geoderma, 267, 41-47, 2016.
    • Pohl, M., Hoffmann, M., Hagemann, U., Giebels, M., Albiac Borraz, E., Sommer, M., and Augustin, J.: Dynamic C and N stocks - key factors controlling the C gas exchange of maize in heterogenous peatland, Biogeosciences, 12, 2737-2752, doi:10.5194/bg12-2737-2015, 2015.
    • Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbiger, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Metteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol., 11, 1424-1439, 2005.
    • Rieckh, H., Gerke, H. H., and Sommer, M.: Hydraulic properties of characteristic horizons depending on relief position and structure in a hummocky glacial soil landscape, Soil Tillage Res., 125, 123-131, 2012.
    • Saby, N. P. A., Bellamy, P. H., Morvan, X., Arrouays, D., Jones, R. J. A., Verheijen, F. G. A., Kibblewhite, M. G., Verdoodt, A., Üveges, J. B., Freudenschuß, A., and Simota, C.: Will European soil-monitoring networks be able to detect changes in topsoil organic carbon content?, Glob. Change Biol., 14, 2432-2442, 2008.
    • Sainju, U. M., Singh, B. P., and Whitehead, W. F.: Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA, Soil Tillage Res., 63, 167-179, 2002.
    • Savage, K. E. and Davidson, E. A.: A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial and temporal resolution, J. Exp. Bot., 54, 891- 899, 2003.
    • Schlichting, E., Blume, H. P., and Stahr, K.: Soils Practical, Blackwell, Berlin, 1995 (in German).
    • Schrumpf, M., Schulze, E. D., Kaiser, K., and Schumacher, J.: How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?, Biogeosciences, 8, 1193-1212, doi:10.5194/bg-8-1193-2011, 2011.
    • Six, J., Conant, R. T., Paul, E. A., and Paustian, K.: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils, Plant Soil, 241, 155-176, 2002.
    • Skinner, R. H. and Dell, C. J.: Comparing pasture C sequestration estimates from eddy covariance and soil cores, Agric. Ecosyst. Eviron., 199, 52-57, 2015.
    • Smith, P., Lanigan, G., Kutsch, W. L., Buchmann, N., Eugster, W., Aubinet, M., Ceschia, E., Béziat, P., Yeluripati, J. B., Osborne, B., Moors, E. J., Brut, A., Wattenbach, M., Saunders, M., and Jones, M.: Measurements necessary for assessing the net ecosystem carbon budget of croplands, Agric. Ecosyst. Eviron., 139, 302-315, 2010.
    • Sommer, M., Augustin, J., and Kleber, M.: Feedbacks of soil erosion on SOC patterns and carbon dynamics in agricultural landscapes - the CarboZALF experiment, Soil Tillage Res., 156, 182-184, 2016.
    • Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., and Six, J.: Soil carbon saturation: concept, evidence and evaluation, Biogeochemistry, 86, 19-31, 2007.
    • Stockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez, D., Montanarella, L., Hong, Y., S., Rawlins, B. G., and Filed, D. J.: Global soil organic carbon assessment, Glob. Food Secur., 6, 9-16, 2015.
    • Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J. W., Ritchie, J. C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J. V., da Silva, J. R., and Merckx, R.: The impact of agricultural soil erosion on the global carbon cycle, Science, 318, 626-629, 2007.
    • Van Wesemael, B., Paustian, K., Andrén, O., Cerri, C. E. P., Dodd, M., Etchevers, J., Goidts, E., Grace, P., Kätterer, T., McConkey, B. G., Ogle, S., Pan, G., and Siebner, C.: How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils?, Plant Soil, 338, 247-259, 2011.
    • VandenBygaart, A. J.: Monitoring soil organic carbon stock changes in agricultural landscapes: issues and a proposed approach, Can. J. Soil Sci., 86, 451-463, 2006.
    • VandenBygaart, A. J., Gregorich, E. G., and Helgason, B. L.: Cropland C erosion and burial: is buried soil organic matter biodegradable?, Geoderma, 239-240, 240-249, 2015.
    • Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A.: Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems, Agric. For. Meteorol., 131, 77-96, 2005.
    • Wagle, P., Kakani, V. G., and Huhnke, R. L.: Net ecosystem carbon dioxide exchange of dedicated bioenergy feedstocks: switchgrass and high biomass sorghum, Agric. For. Meteorol., 207, 107-116, 2015.
    • Wang, K., Liu, C., Zheng, X., Pihlatie, M., Li, B., Haapanala, S., Vesala, T., Liu, H., Wang, Y., Liu, G., and Hu, F.: Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields, Biogeosciences, 10, 6865-6877, doi:10.5194/bg-10-6865-2013, 2013.
    • Wehrhan, M., Rauneker, P., and Sommer, M.: UAV-based estimation of carbon exports from heterogeneous soil landscapes - a case study from the CarboZALF experimental area, Sensors (Basel), 16, 255, 2016.
    • Wuest, S.: Seasonal variation in soil organic carbon, Soil Sci. Soc. Am. J., 78, 1442-1447, 2014.
    • Xiong, X., Grunwald, S., Corstanje, R., Yu, C., and Bliznyuk, N.: Scale-dependent variability of soil organic carbon coupled to land use and land cover, Soil Tillage Res., 160, 101-109, 2016.
    • Yin, X., Goudriaan, J., Lantinga, E. A., Vos, J., and Spiertz, H. J.: A flexible sigmoid function of determinate growth, Ann. Bot., 91, 361-371, 2003.
    • Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E.: Erosion of upland hillslope soil organic carbon: coupling field measurements with a sediment transport model, Global Biogeochem. Cy., 19, 1-17, 2005.
    • Zan, C. S., Fyles, J. W., Girouard, P., and Samson, R. A.: Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec, Agric. Ecosyst. Environ., 86, 135- 144, 2001.
    • Zeide, B.: Analysis of growth equations, For. Sci., 39, 594-616, 1993.
  • No similar publications.

Share - Bookmark

Cite this article