Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Christensen, Ole Martin; Benze, Susanne; Eriksson, Patrick; Gumbel, Jörg; Megner, Linda; Murtagh, Donal P. (2016)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: Chemistry, QD1-999, Physics, QC1-999

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Astrophysics::Earth and Planetary Astrophysics
In this study the properties of polar mesospheric clouds (PMCs) and the background atmosphere in which they exist are studied using measurements from two instruments, OSIRIS and SMR, on board the Odin satellite. The data comes from a set of tomographic measurements conducted by the satellite during 2010 and 2011. The expected ice mass density and cloud frequency for conditions of thermodynamic equilibrium, calculated using the temperature and water vapour as measured by SMR, are compared to the ice mass density and cloud frequency as measured by OSIRIS. We find that assuming thermodynamic equilibrium reproduces the seasonal, latitudinal and vertical variations in ice mass density and cloud frequency, but with a high bias of a factor of 2 in ice mass density.

To investigate this bias, we use a simple ice particle growth model to estimate the time it would take for the observed clouds to sublimate completely and the time it takes for these clouds to reform. We find a difference in the median sublimation time (1.8 h) and the reformation time (3.2 h) at peak cloud altitudes (82–84 km). This difference implies that temperature variations on these timescales have a tendency to reduce the ice content of the clouds, possibly explaining the high bias of the equilibrium model.

Finally, we detect and are, for the first time, able to positively identify cloud features with horizontal scales of 100 to 300 km extending far below the region of supersaturation ( > 2 km). Using the growth model, we conclude these features cannot be explained by sedimentation alone and suggest that these events may be an indication of strong vertical transport.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baumgarten, G., Fiedler, J., and Von Cossart, G.: The size of noctilucent cloud particles above ALOMAR (69 N, 16 E): Optical modeling and method description, Adv. Space. Res., 40, 772- 784, 2007.
    • Baumgarten, G., Fiedler, J., and Rapp, M.: On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution, Atmos. Chem. Phys., 10, 6661-6668, doi:10.5194/acp-10-6661-2010, 2010.
    • Becker, E., Müllemann, A., Lübken, F.-J., Körnich, H., Hoffmann, P., and Rapp, M.: High Rossby-wave activity in austral winter 2002: Modulation of the general circulation of the MLT during the MaCWAVE/MIDAS northern summer program, Geophys. Res. Lett., 31, L24S03, doi:10.1029/2004GL019615, 2004.
    • Berger, U. and von Zahn, U.: Three-dimensional modeling of the trajectories of visible noctilucent cloud particles: An indication of particle nucleation well below the mesopause, J. Geophys. Res., 112, D16208, doi:10.1029/2006JD008106, 2007.
    • Christensen, O. M., Eriksson, P., Urban, J., Murtagh, D., Hultgren, K., and Gumbel, J.: Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using OdinSMR, Atmos. Meas. Tech., 8, 1981-1999, doi:10.5194/amt-8- 1981-2015, 2015.
    • Eremenko, M. N., Petelina, S. V., Zasetsky, A. Y., Karlsson, B., Rinsland, C. P., Llewellyn, E. J., and Sloan, J. J.: Shape and composition of PMC particles derived from satellite remote sensing measurements, Geophys. Res. Lett., 32, L16105, doi:10.1029/2005GL023013, 2005.
    • Feofilov, A. G. and Petelina, S. V.: Relation between mesospheric ice clouds, temperature, and water vapor determined from Odin/OSIRIS and TIMED/SABER data, J. Geophys. Res., 115, D18220, doi:10.1029/2009JD013619, 2010.
    • Gadsden, M.: Noctilucent clouds seen at 60 N: origin and development, J. Atmos. Sol.-Terr. Phys., 60, 1763-1772, 1998.
    • Hedin, A. E.: Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159-1172, 1991.
    • Hervig, M., Thompson, R. E., McHugh, M., Gordley, L. L., Russell, J. M., and Summers, M. E.: First confirmation that water ice is the primary component of polar mesospheric clouds, Geophys. Res. Lett., 28, 971-974, 2001.
    • Hervig, M. E. and Stevens, M. H.: Interpreting the 35 year SBUV PMC record with SOFIE observations, J. Geophys. Res., 119, 12689-12705, 2014.
    • Hervig, M. E., Gordley, L. L., Russell, J. M., and Bailey, S. M.: SOFIE PMC observations during the northern summer of 2007, J. Atmos. Sol.-Terr. Phys., 71, 331-339, 2009a.
    • Hervig, M. E., Stevens, M. H., Gordley, L. L., Deaver, L. E., Russell, J. M., and Bailey, S. M.: Relationships between polar mesospheric clouds, temperature, and water vapor from Solar Occultation for Ice Experiment (SOFIE) observations, J. Geophys. Res., 114, D20203, doi:10.1029/2009JD012302, 2009b.
    • Hervig, M. E., Siskind, D. E., Stevens, M. H., and Deaver, L. E.: Inter-hemispheric comparison of PMCs and their environment from SOFIE observations, J. Atmos. Sol.-Terr. Phys., 104, 285- 298, 2013.
    • Hervig, M. E., Siskind, D. E., Bailey, S. M., and Russell, J. M.: The influence of PMCs on water vapor and drivers behind PMC variability from SOFIE observations, J. Atmos. Sol.-Terr. Phys., 132, 124-134, 2015.
    • Hervig, M. E., Berger, U., and Siskind, D. E.: Decadal variability in PMCs and implications for changing temperature and water vapor in the upper mesosphere, J. Geophys. Res.-Atmos., 121, 2383-2392, 2016.
    • Hesstvedt, E.: Note on the nature of noctilucent clouds, J. Geophys. Res., 66, 1985-1987, 1961.
    • Hultgren, K. and Gumbel, J.: Tomographic and spectral views on the lifecycle of polar mesospheric clouds from Odin/OSIRIS, J. Geophys. Res., 119, 14129-14143, doi:10.1002/2014JD022435, 2014.
    • Hultgren, K., Gumbel, J., Degenstein, D., Bourassa, A., Lloyd, N., and Stegman, J.: First simultaneous retrievals of horizontal and vertical structures of Polar Mesospheric Clouds from Odin/OSIRIS tomography, J. Atmos. Sol.-Terr. Phys., 104, 213- 223, 2013.
    • Jensen, E. and Thomas, G. E.: A growth-sedimentation model of polar mesospheric clouds: Comparison with SME measurements, J. Geophys. Res., 93, 2461-2473, 1988.
    • Jensen, E. J. and Thomas, G. E.: Numerical simulations of the effects of gravity waves on noctilucent clouds, J. Geophys. Res. Atmos., 99, 3421-3430, 1994.
    • Kaifler, N., Baumgarten, G., Klekociuk, A., Alexander, S., Fiedler, J., and Lübken, F.-J.: Small scale structures of NLC observed by lidar at 69 N/69 S and their possible relation to gravity waves, J. Atmos. Sol.-Terr. Phys., 104, 244-252, 2013.
    • Karlsson, B., Körnich, H., and Gumbel, J.: Evidence for interhemispheric stratosphere-mesosphere coupling derived from noctilucent cloud properties, Geophys. Res. Lett., 34, L16826, doi:10.1029/2007GL030282, 2007.
    • Karlsson, B., Randall, C., Benze, S., Mills, M., Harvey, V., Bailey, S., and Russell, J.: Intra-seasonal variability of polar mesospheric clouds due to inter-hemispheric coupling, Geophys. Res. Lett., 36, L20803, doi:10.1029/2009GL038506, 2009.
    • Kiliani, J., Baumgarten, G., Lübken, F.-J., Berger, U., and Hoffmann, P.: Temporal and spatial characteristics of the formation of strong noctilucent clouds, J. Atmos. Sol.-Terr. Phys., 104, 151- 166, 2013.
    • López-Puertas, M., García-Comas, M., Funke, B., BermejoPantaleón, D., Höpfner, M., Grabowski, U., Stiller, G. P., von Clarmann, T., and von Savigny, C.: Measurements of polar mesospheric clouds in infrared emission by MIPAS/ENVISAT, J. Geophys. Res., 114, D00I07, doi:10.1029/2009JD012548, 2009.
    • Lossow, S., Urban, J., Schmidt, H., Marsh, D., Gumbel, J., Eriksson, P., and Murtagh, D.: Wintertime water vapor in the polar upper mesosphere and lower thermosphere: First satellite observations by Odin submillimeter radiometer, J. Geophys. Res., 114, D10304, doi:10.1029/2008JD011462, 2009.
    • Lumpe, J., Bailey, S., Carstens, J., Randall, C., Rusch, D., Thomas, G., Nielsen, K., Jeppesen, C., McClintock, W., Merkel, A., Riesberg, L., Templeman, B., Baumgarten, G., and III, J. R.: Retrieval of polar mesospheric cloud properties from CIPS: Algorithm description, error analysis and cloud detection sensitivity, J. Atmos. Sol.-Terr. Phys., 104, 167-196, 2013.
    • McLinden, C. A., Fioletov, V. E., Haley, C. S., Lloyd, N., Roth, C., Degenstein, D., Bourassa, A., McElroy, C. T., and Llewellyn, E. J.: An evaluation of Odin/OSIRIS limb pointing and stratospheric ozone through comparisons with ozonesondes, Can. J. Phys., 85, 1125-1141, 2007.
    • Megner, L.: Minimal impact of condensation nuclei characteristics on observable Mesospheric ice properties, J. Atmos. Sol.-Terr. Phys., 73, 2184-2191, 2011.
    • Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc., 131, 1539-1565, 2005.
    • Rapp, M. and Hoppe, U.-P.: A reconsideration of spectral width measurements in PMSE with EISCAT, Adv. Space. Res., 38, 2408-2412, 2006.
    • Rapp, M. and Thomas, G. E.: Modeling the microphysics of mesospheric ice particles: Assessment of current capabilities and basic sensitivities, J. Atmos. Sol.-Terr. Phys., 68, 715-744, 2006.
    • Rapp, M., Lübken, F.-J., Müllemann, A., Thomas, G. E., and Jensen, E. J.: Small-scale temperature variations in the vicinity of NLC: Experimental and model results, J. Geophys. Res., 107, 11-20, 2002.
    • Rong, P., Russell, J., Hervig, M., and Bailey, S.: The roles of temperature and water vapor at different stages of the polar mesospheric cloud season, J. Geophys. Res., 117, D04208, doi:10.1029/2011JD016464, 2012.
    • Rong, P. P., Russell, J. M., Randall, C. E., Bailey, S. M., and Lambert, A.: Northern PMC brightness zonal variability and its correlation with temperature and water vapor, J. Geophys. Res. Atmos., 119, 2390-2408, 2014.
    • Russell, J. M., Rong, P., Bailey, S. M., Hervig, M. E., and Petelina, S. V.: Relationship between the summer mesopause and polar mesospheric cloud heights, J. Geophys. Res., 115, D16213, doi:10.1029/2010JD013852, 2010.
    • Thomas, G. E. and McKay, C. P.: On the mean particle size and water content of polar mesospheric clouds, Planet. Space Sci., 33, 1209-1224, 1985.
    • Thomas, G. E., Olivero, J. J., Jensen, E. J., Schroeder, W., and Toon, O. B.: Relation between increasing methane and the presence of ice clouds at the mesopause, Nature, 338, 490-492, 1989.
    • Turco, R., Toon, O., Whitten, R., Keesee, R., and Hollenbach, D.: Noctilucent clouds: Simulation studies of their genesis, properties and global influences, Planet. Space Sci., 30, 1147-1181, 1982.
    • Urban, J., Lautié, N., Murtagh, D. P., Eriksson, P., Kasai, Y., Lossow, S., Dupuy, E., Noë, J. D. L., Frisk, U., Olberg, M., Flochmoën, E. L., and Ricaud, P.: Global observations of middle atmospheric water vapour by the Odin satellite: an overview, Planet. Space Sci., 55, 1093-1102, 2007.
    • von Zahn, U. and Berger, U.: Persistent ice cloud in the midsummer upper mesosphere at high latitudes: Three-dimensional modeling and cloud interactions with ambient water vapor, J. Geophys. Res., 108, D88451, doi:10.1029/2002JD002409, 2003.
    • Zasetsky, A. Y., Petelina, S. V., Remorov, R., Boone, C. D., Bernath, P. F., and Llewellyn, E. J.: Ice particle growth in the polar summer mesosphere: Formation time and equilibrium size, Geophys. Res. Lett., 36, L15803, doi:10.1029/2009GL038727, 2009.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article