LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rafiei Emam, Ammar; Kappas, Martin; Hoang Khanh Nguyen, Linh; Renchin, Tsolmon (2016)
Languages: English
Types: Article
Subjects:
Hydrological modeling of ungauged basins which have a high risk of natural hazards (e.g., flooding, droughts) is always imperative for policymakers and stakeholders. The Aluoi district in Hue province is a representative case study in Central Vietnam, as it is under extreme pressure of natural and anthropogenic factors. Flooding, soil erosion and sedimentation are the main hazards in this area, which threaten socio-economic activities not only in this district but also those of the area downstream. To evaluate the water resources and risk of natural hazards, we used Soil and Water Assessment Tools (SWAT) to set up a hydrological model in the ungauged basin of Aluoi district. A regionalization approach was used to predict the river discharge at the outlet of the basin. The model was calibrated in three time scales: daily, monthly and yearly by river discharge, actual evapotranspiration (ETa) and crop yield, respectively. The model was calibrated with Nash-Sutcliff and an R2 coefficients greater than 0.7, in daily and monthly scales, respectively. In the yearly scale, the crop yield inside the model was calibrated and validated with RMSE less than 2.4 ton/ha, which showed the high performance of the model. The water resource components were mapped temporally and spatially. The outcomes showed that the highest mean monthly surface runoff, 700 to 765 mm, between September and November, resulted in extreme soil erosion and sedimentation. The monthly average of actual evapotranspiration was the highest in May and lowest in December. Furthermore, installing "Best Management Practice" (BMPs) reduced surface runoff and soil erosion in agricultural lands. However, using event-based hydrological and hydraulically models in the prediction and simulation of flooding events is recommended in further studies.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from