LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, X.; Sun, D. H.; Wang, F.; Li, B. F.; Wu, S.; Guo, F.; Li, Z. J.; Zhang, Y. B.; Chen, F. H. (2013)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: Environmental pollution, GE1-350, TD172-193.5, Environmental sciences, Environmental protection, TD169-171.8
The Taklimakan Desert in the Tarim Basin is the largest desert in Central Asia, and is regarded as one of the main dust sources to the Northern Hemisphere. Late Cenozoic sedimentary sequences with intercalated in-situ aeolian dune sands in this area preserve direct evidence for the Asian desertification. Herein, we report a high-resolution multi-proxy climatic record from the precise magnetostratigraphic dated Hongbaishan section in the central Taklimakan Desert. Our results show that a fundamental climate change, characterised by significant cooling, enhanced aridity, and intensified atmospheric circulation, occurred at 2.8 Ma. Good correlations between paleo-environmental records in the dust sources and downwind areas suggest a broadly consistent climate evolution of northwestern China during the late Cenozoic, which is probably driven by the uplift of the Tibet Plateau and the Northern Hemisphere glaciation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • An, Z., Kutzbach, J., Prell, W., and Porter, S.: Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times, Nature, 411, 62-66, 2001.
    • Aoki, I., Kurosaki, Y., Osada, R., Sato, T., and Kimura, F.: Dust storms generated by mesoscale cold fronts in the Tarim Basin, Northwest China, Geophys. Res. Lett., 32, L06807, doi:10.1029/2004GL021776, 2005.
    • Ashley, G. M.: Interpretation of polymodal sediments, The Journal of Geology, 86, 411-421, 1978.
    • Barrón, V. and Torrent, J.: Origin of red-yellow mottling in a Ferric Acrisol of southern Spain, Zeitschrift für Pflanzenernährung und Bodenkunde, 150, 308-313, 1987.
    • Begét, J. and Hawkins, D.: Influence of orbital parameters on Pleistocene loess deposition in central Alaska, Nature, 337, 151-153, 1989.
    • Bennett, S. J. and Best, J. L.: Mean flow and turbulence structure over fixed, two-dimensional dunes: Implications for sediment transport and bedform stability, Sedimentology, 42, 491- 513, 1995.
    • Boggs, S.: Principles of sedimentology and stratigraphy, Prentice Hall Upper Saddle River, NJ, USA, 1995.
    • Bronger, A. and Heinkele, T.: Micromorphology and genesis of paleosols in the Luochuan loess section, China: pedostratigraphic and environmental implications, Geoderma, 45, 123-143, 1989.
    • Bronger, A. and Heinkele, T.: Mineralogical and clay mineralogical aspects of loess research, Quaternary Int., 7, 37-51, 1990.
    • Chamley, H.: Clay sedimentology, Springer-Verlag New York, 1989.
    • Chang, H., An, Z., Liu, W., Qiang, X., Song, Y., and Ao, H.: Magnetostratigraphic and palaeoenvironmental records for a Late Cenozoic sedimentary sequence drilled from Lop Nor in the eastern Tarim Basin, Global Planet. Change, 80-81, 113-122, 2012.
    • Chen, J. and Li, G.: Geochemical studies on the source region of Asian dust, Science China: Earth Science, 54, 1279-1301, 2011.
    • Chen, S., Wang, S, Jin, Z, and Shen, J.: Chemical Weathering and Environmental Change Records of the Last 2.8 Ma in the Central Tibetan Plateau, Geol. J. China Univ., 9, 19-29, 2003.
    • Chlachula, J.: The Siberian loess record and its significance for reconstruction of Pleistocene climate change in north-central Asia, Quaternary Sci. Rev., 22, 1879-1906, 2003.
    • Dearing, J.: Environmental magnetic susceptibility, Chi Publ, Kenilworth, UK, 1994.
    • Ding, Z., Liu, T., Rutter, N., Yu, Z., Guo, Z., and Zhu, R.: Icevolume forcing of East Asian winter monsoon variations in the past 800,000 years, Quaternary Res., 44, 149-159, 1995.
    • Ding, Z., Xiong, S., Sun, J., Yang, S., Gu, Z., and Liu, T.: Pedostratigraphy and paleomagnetism of a 7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution, Palaeogeogr. Palaeocli. Palaeoecol., 152, 49-66, 1999.
    • Ding, Z., Derbyshire, E., Yang, S., Yu, Z., Xiong, S., and Liu, T.: Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record, Paleoceanography, 17, 5-1-5-21, doi10.1029/2001PA000725, 2002.
    • Duller, R., Whittaker, A., Fedele, J., Whitchurch, A., Springett, J., Smithells, R., Fordyce, S., and Allen, P.: From grain size to tectonics, J. Geophys. Res., 115, F03022, doi:10.1029/2009JF001495, 2010.
    • Evans, M. and Heller, F.: Magnetism of loess/palaeosol sequences: recent developments, Earth-Sci. Rev., 54, 129-144, 2001.
    • Guo, Z., Ruddiman, W., Hao, Q., Wu, H., Qiao, Y., Zhu, R., Peng, S., Wei, J., Yuan, B., and Liu, T.: Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature, 416, 159-163, 2002.
    • Huang, J. and Chen, B.: On the Formation of Pliocene-Quaternary Molasses in the Tethys-Himalayan Tectonic Domain and Its Relation with the Indian Plate Motion, in: Scientific Papers on Geology for international exchange, prepared for the 26th international geological congress 1 tectonic geology and geological mechanics, 1-14, 1980.
    • Konert, M. and Vandenberghe, J. E. F.: Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction, Sedimentology, 44, 523- 535, 1997.
    • Kutzbach, J., Prell, W., and Ruddiman, W.: Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau, The Journal of Geology, 177-190, 1993.
    • Li, J. and Fang, X.: Uplift of the Tibetan Plateau and nvironmental changes, Chinese Sci. Bull., 44, 2117-2124, 1999.
    • Lisiecki, L. and Raymo, M.: A Plio-Pleistocene stack of 57 globally distributed benthic δ18 O records, Paleoceanography, 20, 522- 533, 2005.
    • Liu, Q., Roberts, A. P., Larrasoaña, J. C., Banerjee, S. K., Guyodo, Y., Tauxe, L., and Oldfield, F.: Environmental magnetism: Principles and applications, Rev. Geophys., 50, RG4002, doi:10.1029/2012RG000393, 2012.
    • Liu, T.: Loess and the Environment, China Ocean Press, Beijing, 251 pp., 1985.
    • Lu, H., Wang X., and Li L.: Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia, Geological Society, London, Special Publications, 342, 29- 44, 2010.
    • Lv, Y., Zhao, J., Huang, W., Tao, S., and An, C.: Decomposition of the Grain-size Component and Its Climate Implication from Lake Barkol, Xinjiang, Acta Sedimentologica Sinica, 29, 134- 142, 2011.
    • Manabe, S. and Broccoli, A.: Mountains and arid climates of middle latitudes, Science, 247, 192-195, 1990.
    • Manabe, S. and Terpstra, T. B.: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments, J. Atmos. Sci., 31, 3-42, 1974.
    • McCave, I., Manighetti, B., and Beveridge, N. A. S.: Circulation in the glacial North Atlantic inferred from grain-size measurements, Nature, 374, 149-152, 1995.
    • Miao, Y., Herrmann, M., Wu, F., Yan, X., and Yang, S.: What controlled Mid-Late Miocene long-term aridification in Central Asia?-Global cooling or Tibetan Plateau uplift: A review, EarthSci. Rev., 112, 155-172, 2012.
    • Middleton, G. V.: Hydraulic interpretation of sand size distributions, The Journal of Geology, 84, 405-426, 1976.
    • Molnar, P., Boos, W., and Battisti, D.: Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau, Annu. Rev. Earth Planet. Sci., 38, 77-102, 2010.
    • Paton, T. R.: The formation of soil material, George Allen and Uniwin Press, London, 143 pp., 1978.
    • Picard, M. D. and High J.: Physical stratigraphy of ancient lacustrine deposits, in: Recognition of Ancient Sedimentary Environments, edited by: Rigby, J. K. and Hamblin, W. K., 16, Soc. Econ. Paleontol. Mineral., Spec. Publ., 108-145, 1981.
    • Porter, S.: Chinese loess record of monsoon climate during the last glacial-interglacial cycle, Earth-Sci. Rev., 54, 115-128, 2001.
    • Porter, S. and An, Z.: Correlation between climate events in the North Atlantic and China during the last glaciations, Nature, 375, 305-308, 1995.
    • Prell, W. L. and Kutzbach, J. E.: Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution, Nature, 360, 647-652, 1992.
    • Pye, K.: Aeolian dust and dust deposits, Academic Press Londres, 1987.
    • Pye, K. and Tsoar, H.: Aeolian sand and sand dunes, Springer, 2009.
    • Qiang, X., An, Z., Song, Y., Chang, H., Sun, Y., Liu, W., Ao, H., Dong, J., Fu, C., Wu, F., Lu, F., Cai, Y., Zhou, W., Cao, J., Xu, X., and Ai, L.: New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago, Science China: Earth Sciences, 54, 1-9, 2011.
    • Ramstein, G., Fluteau, F., Besse, J., and Joussaume, S.: Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years, Nature, 386, 788- 795, 1997.
    • Rea, D., Leinen, M., and Janecek, T.: Geologic approach to the long-term history of atmospheric circulation, Science, 227, 721- 725, 1985.
    • Rea, D., Snoeckx, H., and Joseph, L.: Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere, Paleoceanography, 13, 215-224, 1998.
    • Reading, H.: Sedimentary environments: processes, facies, and stratigraphy, Wiley-Blackwell, 1996.
    • Ruddiman, W. F. and Kutzbach, J. E.: Late Cenozoic plateau uplift and climate change, Transactions of the Royal Society of Edinburgh: Earth Sciences, 81, 301-314, 1990.
    • Si, J., Li, H., Pei, J., and Pan, J.: Uplift of Northwest Margin of Tibetan Plateau: Indicated by Zircon LA ICP-MS U-Pb Dating of Conglomerate from Mazartagh, Tarim Basin, J. Earth Sci., 20, 401-416, 2009.
    • Sly, P. G.: Sedimentary processes in lakes, in:Lakes: Chemistry, Geology, Physics, edited by: Lerman, A., Springer, New York, 65- 89, 1978.
    • Sun, D., Shaw, J., An, Z., Cheng, M., and Yue, L.: Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau, Geophys. Res. Lett., 25, 85-88, 1998.
    • Sun, D., Bloemendal, J., Rea, D., Vandenberghe, J., Jiang, F., An, Z., and Su, R.: Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components, Sediment. Geol., 152, 263-277, 2002.
    • Sun, D., Bloemendal, J., Rea, D., An, Z., Vandenberghe, J., Lu, H., Su, R., and Liu, T.: Bimodal grain-size distribution of chinese loess, and its palaeoclimatic implications, Catena, 55, 325-340, 2004.
    • Sun, D., Su, R., Bloemendal, J., and Lu, H.: Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation, Palaeogeogr. Palaeocli. Palaeoecol., 264, 39-53, 2008.
    • Sun, D., Bloemendal, J., Yi, Z., Zhu, Y., Wang, X., Zhang, Y., Li, Z., Wang, F., Han, F., and Zhang, Y.: Palaeomagnetic and palaeoenvironmental study of two parallel sections of late Cenozoic strata in the central Taklimakan Desert: Implications for the desertification of the Tarim Basin, Palaeogeogr. Palaeocli. Palaeoecol., 300, 1-10, 2011a.
    • Sun, D., Su, R., Li, Z., and Lu, H.: The ultrafine component in Chinese loess and its variation over the past 7.6 Ma: implications for the history of pedogenesis, Sedimentology, 58, 916-935, 2011b.
    • Sun, D., Zhang, Y., Han, F., Zhang, Y., Yi, Z., Li, Z., Wang, F., Wu, S., and Li, B.: Magnetostratigraphy and palaeoenvironmental records for a Late Cenozoic sedimentary sequence from Lanzhou, Northeastern margin of the Tibetan Plateau, Global Planet. Change, 76, 106-116, 2011c.
    • Sun, J., Ye, J., Wu, W., Ni, X., Bi, S., Zhang, Z., Liu, W., and Meng, J.: Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior, Geology, 38, 515-518, 2010.
    • Sun, Y. and An, Z.: Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau, J. Geophys. Res., 110, D23101, doi:10.1029/2005JD006064, 2005.
    • Sun, Y., An, Z., Clemens, S., Bloemendal, J., and Vandenberghe, J.: Seven million years of wind and precipitation variability on the Chinese Loess Plateau, Earth Planet. Sci. Lett., 297, 525-535, 2010.
    • Sun, Y., He, L., Liang, L., and An, Z.: Changing color of Chinese loess: Geochemical constraint and paleoclimatic significance, J. Asian Earth Sci., 40, 1131-1138, 2011.
    • Thompson, J. and Bell, J.: Color index for identifying hydric conditions for seasonally saturated mollisols in Minnesota, Soil Sci. Soc. Am. J., 60, 1979-1988, 1996.
    • Vandenberghe, J.: Grain size of fine-grained windblown sediment: A powerful proxy for process identification, Earth-Sci. Rev., 121, 18-30, 2013.
    • Viscarra Rossel, R., Minasny, B., Roudier, P., and McBratney, A.: Colour space models for soil science, Geoderma, 133, 320-337, 2006.
    • Wang, F., Sun, D., Guo, F., Wang, X., Li, Z., Zhang, Y., Li, B., and Wu, S.: Quantitative reconstruction of paleo-temperature and paleo-precipitation of Lingtai profile in Loess Plateau during the past 7 Ma, J. Earth Environ., 3, 791-791, 2012.
    • Wang, X., Sun, D., Wang, F., Li, B., and Wu, S.: The ultrafine component record from the late Cenozoic sequence in the central Tarim basin and its palaeoclimatic implication, Mar. Geol. Quatern. Geol., 32, 143-151, 2012.
    • Washington, R., Todd, M., Middleton, N., and Goudie, A.: Duststorm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations, Ann. Assoc. Am. Geogr., 93, 297-313, 2003.
    • Xiao, J., Chang, Z., Fan, J., Zhou, L., Zhai, D., Wen, R., and Qin, X.: The link between grain-size components and depositional processes in a modern clastic lake, Sedimentology, 59, 1050-1062, 2012.
    • Xu, J., Yang, Z., Zheng, H., Zhang, J., Lin, F., and Shi, Y.: Quaternary magnetic stratigraphy of the Tarim Basin, J. Stratigr., 27, 256-261, 2003.
    • Yang, S., Fang, X., Li, J., An, Z., Chen, S., and Hitoshi, F.: Transformation functions of soil color and climate, Science in China Series D: Earth Sciences, 44, 218-226, 2001.
    • Yong, T., Shan, J., and Wang, S.: Several geological issues about the Marzartag-together with the geological age of the Taklamakan desert, Xinjiang Petroleum Geol., 4, 1-9, 1983.
    • Zan, J., Fang, X., Yang, S., Nie, J., and Li, X.: A rock magnetic study of loess from the West Kunlun Mountains, J. Geophys. Res., 115, B10101, doi:10.1029/2009JB007184, 2010.
    • Zhang, H. and Men, G.: Stratigraphic subdivision and climatic change of the Quaternary of the center Taklimakan Deaert, Xinjiang Geol., 20, 256-261, 2002.
    • Zhang, X., Gong, S., Zhao, T., Arimoto, R., Wang, Y., and Zhou, Z.: Sources of Asian dust and role of climate change versus desertification in Asian dust emission, Geophys. Res. Lett., 30, 2272, doi:10.1029/2003GL018206, 2003.
    • Zhang, Z., Wang, H., Guo, Z., and Jiang, D.: What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?, Palaeogeogr. Palaeocli. Palaeoecol., 245, 317-331, 2007.
    • Zheng, H., Powell, C., An, Z., Zhou, J., and Dong, G.: Pliocene uplift of the northern Tibetan Plateau, Geology, 28, 715-718, 2000.
    • Zhu, Z., Wu, Z., Liu, S., and Di, X: An outline on Chinese Deserts, Science Press, Beijing, 107 pp., 1980.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    A high-resolution multi-proxy record of late Cenozoic environment change from central Taklimakan Desert, China

    201396
    96%

    Phylogenetic analysis of bacterial species compositions in sand dunes and dust aerosol in an Asian dust source area, the Taklimakan Desert

    201683
    83%

    Land cover change and land use of oases surrounding Taklimakan Desert in Xiniiang Uyghur, China derived from satellite images

    200580
    80%

    Spatial-Temporal Distribution of Soil Salt Crusts under Saline Drip Irrigation in an Artificial Desert Highway Shelterbelt

    201684
    84%

    The Impacts of Taklimakan Dust Events on Chinese Urban Air Quality in 2015

    201885
    85%

    Elevated large-scale dust veil originated in the Taklimakan Desert: intercontinental transport and 3-dimensional structure captured by CALIPSO and regional and global models

    200970
    70%

    Nondimensional Wind and Temperature Profiles in the Atmospheric Surface Layer over the Hinterland of the Taklimakan Desert in China

    201676
    76%

    Ground Surface Features of Taklimakan Desert : Features of Spectral Reflectance of Soils, Vegetation etc.

    199582
    82%

    Distinguishing the provenance of fine-grained eolian dust over the Chinese Loess Plateau from a modelling perspective

    201185
    85%

    An elevated large-scale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models

    200972
    72%

    Profiles of irrigation water quality of selected sites.

    201679
    79%

    First long-term detection of paleo-oceanic signature of dust aerosol at the southern marginal area of the Taklimakan Desert

    201881
    81%

    The effects of soil salt crusts on soil evaporation and chemical changes in different ages of Taklimakan Desert Shelterbelts

    201378
    78%

    Late Oligocene–early Miocene birth of the Taklimakan Desert

    201572
    72%

Share - Bookmark

Cite this article