LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jackson, Charles S.; Huerta, Gabriel (2016)
Languages: English
Types: Article
Subjects:
Climate data is highly correlated through the physics and dynamics of the atmosphere. Model evaluation often involves averages of various quantities over different regions and seasons making it difficult from a statistical perspective to quantify the significance of differences that arise between a model and observations. Here we present a strategy that makes use of a set of perfect modeling experiments to quantify the effects of these correlations on model evaluation metrics. This information is incorporated into Bayesian inference through a precision parameter with informative priors. These concepts are illustrated through an example of fitting a line through data that includes either uncorrelated or correlated noise as well as to the calibration of CAM3.1. The concept of a precision parameter may be applied as a strategy to weight different climate model evaluation metrics within a multivariate normal framework. From the example with CAM3.1, the precision parameter plays a central role in rescaling the estimated parametric uncertainties to better accommodate modeling structural errors.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from