LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
K. S. Hui; H. Zhang; H. P. Li; L. D. Dai; H. Y. Hu; J. J. Jiang; W. Q. Sun (2015)
Publisher: Copernicus Publications
Journal: Solid Earth
Languages: English
Types: Article
Subjects: Petrology, Q, QE500-639.5, Dynamic and structural geology, QE640-699, Science, QE1-996.5, Geology, Stratigraphy, QE420-499
In this study, the electrical conductivity of quartz andesite was measured in situ under conditions of 0.5–2.0 GPa and 723–973 K using a YJ-3000t multi-anvil press and a Solartron-1260 Impedance/Gain-Phase Analyzer. Experimental results indicate that grain interior transport controls the higher frequencies (102–106 Hz), whereas the grain boundary process dominates the lower frequencies (10−1–102 Hz). For a given pressure and temperature range, the relationship between Log σ and T−1 follows the Arrhenius relation. As temperature increased, both the grain boundary and grain interior conductivities of quartz andesite increased; however, with increasing pressure, both the grain boundary and grain interior conductivities of the sample decreased. By the virtue of the dependence of grain boundary conductivity on pressure, the activation enthalpy and the activation volume were calculated to be 0.87–0.92 eV and 0.56 ± 0.52 cm3 mol−1, respectively. The small polaron conduction mechanism for grain interior process and the ion conduction mechanism for grain boundary process are also discussed.

Share - Bookmark

Cite this article