LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Dagang; Wang, Guiling; Parr, Dana T.; Liao, Weilin; Xia, Youlong; Fu, Congsheng (2017)
Languages: English
Types: Article
Subjects:
Land surface models bear substantial biases in simulating surface water and energy budgets despite of the continuous development and improvement of model parameterizations. To reduce model biases, Parr et al. (2015) proposed a method incorporating satellite-based evapotranspiration (ET) products into land surface models. Here we apply this method to the Community Land Model version 4.5 (CLM4.5) and test its performance over the conterminous US (CONUS). We first calibrate a relationship between the observational ET from the Global Land Evaporation Amsterdam Model (GLEAM) product and the model ET from CLM4.5, and assume that this relationship holds beyond the calibration period. During the validation or application period, a simulation using the default CLM4.5 (CLM) is conducted first, and its output is combined with the calibrated observational-vs-model ET relationship to derive a corrected ET; an experiment (CLMET) is then conducted in which the model-generated ET is overwritten using the corrected ET. Using the observations of ET, runoff, and soil moisture content as benchmarks, we demonstrate that CLMET greatly reduces the biases existing in CLM. The improvement differs with region, being more significant in eastern CONUS than western CONUS, with the most striking improvement over the southeast CONUS. This regional dependence reflects primarily the regional dependence in the degree to which the relationship between observational and model ET remains time-invariant (a fundamental hypothesis of the Parr et al. method). The bias correction method provides an alternative way to improve the performance of land surface models, which could lead to more realistic drought evaluations with improved ET and soil moisture estimates.

Share - Bookmark

Cite this article

Collected from