Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Modi, M.; Kumar, R.; Ravi Shankar, G.; Martha, T.R. (2014)
Languages: English
Types: 0038
Land use/land cover (LULC) is dynamic in nature and can affect the ability of land to sustain human activities. The Indo-Gangetic plains of north Bihar in eastern India are prone to floods, which have a significant impact on land use / land cover, particularly agricultural lands and settlement areas. Satellite remote sensing techniques allow generating reliable and near-realtime information of LULC and have the potential to monitor these changes due to periodic flood. Automated methods such as object-based techniques have better potential to highlight changes through time series data analysis in comparison to pixel-based methods, since the former provides an opportunity to apply shape, context criteria in addition to spectral criteria to accurately characterise the changes. In this study, part of Kosi river flood plains in Supaul district, Bihar has been analysed to identify changes due to a flooding event in 2008. Object samples were collected from the post-flood image for a nearest neighbourhood (NN) classification in an object-based environment. Collection of sample were partially supported by the existing 2004–05 database. The feature space optimisation procedure was adopted to calculate an optimum feature combination (i.e. object property) that can provide highest classification accuracy. In the study, for classification of post-flood image, best class separation was obtained by using distance of 0.533 for 28 parameters out of 34. Results show that the Kosi flood has resulted in formation of sandy riverine areas.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok