LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Petzold , A.; Weinzierl , B.; Huntrieser , H.; Stohl , A.; Real , E.; Cozic , J.; Fiebig , M.; Hendricks , J.; Lauer , A.; Law , K.; Roiger , A.; Schlager , H.; Weingartner , E. (2007)
Publisher: European Geosciences Union
Journal: Atmospheric Chemistry and Physics Discussions
Languages: English
Types: Article
Subjects: Chemistry, DOAJ:Earth and Environmental Sciences, Atmosphärische Spurenstoffe, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, QD1-999, G, Geography. Anthropology. Recreation, QC801-809, Geophysics. Cosmic physics, Physics, GE1-350, DOAJ:Environmental Sciences, Environmental sciences, QC1-999
During the ICARTT-ITOP Experiment in summer 2004 plumes from large wildfires in North America were transported to Central Europe at 3&ndash;8 km altitude above sea level (a.s.l.). These plumes were studied with the DLR (Deutsches Zentrum fuer Luft- und Raumfahrt) research aircraft Falcon which was equipped with an extensive set of in situ aerosol and trace gas instruments. Analyses by the Lagrangian dispersion model FLEXPART provided source regions, transport times and horizontal extent of the fire plumes. Results from the general circulation model ECHAM/MADE and data from previous aerosol studies over Central Europe provided reference vertical profiles of black carbon (BC) mass concentrations for year 2000 conditions with forest fire activities below the long-term average. Smoke plume observations yielded a BC mass fraction of total aerosol mass with respect to PM2.5 of 3&ndash;10%. The ratio of BC mass to excess CO was 3&ndash;7.5 mg BC (g CO)<sup>&minus;1</sup>. Even after up to 10 days of atmospheric transport, both characteristic properties were of the same order as for fresh emissions. This suggests an efficient lifting of BC from forest fires to higher altitudes with only minor scavenging removal of particulate matter. Maximum aerosol absorption coefficient values were 7&ndash;8&times;10<sup>&ndash;6</sup>m<sup>&minus;1</sup> which is about two orders of magnitude above the average European free tropospheric background value. Forest fire aerosol size distributions were characterised by a strong internally mixed accumulation mode centred at modal diameters of 0.25&ndash;0.30 μm with an average distribution width of 1.30. Nucleation and small Aitken mode particles were almost completely depleted. Even after more than one week of atmospheric transport, no steady state of the size distribution was observed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2006; Bond and Bergstrom, 2006).
    • The high-alpine station Jungfraujoch is the scientific observatory at highest elevation (3580 m.a.s.l.) within Europe, probing European background free tropospheric air in fall and winter, while in summer air from the CBL can be lifted up to the Jungfraujoch 5 observatory by means of convection (Baltensperger et al., 1997; Nyeki et al., 2000).
    • Hohenpeissenberg at an elevation of 989 m.a.s.l. is situated in the CBL almost all over the year. Within the GAW network it is defined as one Central European background site. The time series of σap and BCe measured at the mountain observatories are used in the following (1) for estimating the free tropospheric background values for σap and 10 BCe, and (2) for answering the question how deep the North American forest fire smoke plumes penetrated into the European continental boundary layer.
    • 3.1 The smoke plume from 22-23 July 2004 20 During two flights on 22 July from Creil (France) to San Sebastian (Spain) and back, and on July 23 from Creil to the English Channel and back, an aerosol plume emitted from strong boreal forest fires in Alaska was probed at altitudes between 4 and 8 km a.s.l., see also Fig. 1. The transport analysis by FLEXPART suggests that almost pure forest fire aerosol was sampled. The source region of this fire smoke plume is 25 shown in Fig. 2 as a plot of the column-integrated potential emission sensitivity from a FLEXPART backward simulation for the analysed Falcon flight track with superimposed 7, 4925-4979, 2007 7, 4925-4979, 2007 7, 4925-4979, 2007 7, 4925-4979, 2007 7, 4925-4979, 2007 observations of midlatitude forest fire plumes deep in the stratosphere, Geophys. Res. Lett.
    • 31, L11101, doi:10.1029/2003GL019253, 2004.
    • Kasischke, E. S., Hyer, E. J., Novelli, P. C., Bruhwiler, L. P., French, N. H. F., Sukhinin, A. I., Hewson, J. H., and Stock, B. J.: Influences of boreal forest fire emissions onNorthern Hemi5 sphere atmospheric carbon and carbon monoxide, Global Biogeochem. Cyc., 19, GB1012, doi:10.1029/2004GB002300, 2005.
    • Lauer, A., Hendricks, J., Feichter, J., Ackermann, I., Schell, B., Hass, H., and Metzger, S.: Simulating aerosol microphysics with the ECHAM/MADE GCM - Part I: Model description and comparison with observations, Atmos. Chem. Phys., 5, 3251-3276, 2005, 10 http://www.atmos-chem-phys.net/5/3251/2005/.
    • Res., 105, 26 871-26 890, 2000.
    • Leung, F. T., Logan, J., and Diner, D. J.: The height of lofted biomass burning plumes over 15 Alaska during the 2004 ICARTT period, Eos Trans. AGU, 87, Fall Meet. Suppl., Abstract A51C-0099, 2006.
    • Lohmann, U., Feichter, J., Chuang, C. C., and Penner, J. E.: Prediction of the number of cloud droplets in the ECHAM GCM, J. Geophys. Res., 104, 9169-9198, 1999.
    • Martins, J. V., Artaxo, P., Hobbs, P. V., Liousse, C., Cachier, H., Kaufman, Y., and Plana-Fattori, 20 A.: Particle size distributions, elemental compositions, carbon measurements, and optical propreties of smoke from biomass burning in the Pacific Northwest of the United States, in: Global Biomass Burning and Global Change, edited by: J. S. Levine, 716-732, MIT press, Cambridge, MA, 1996.
    • Methven, J., Arnold, S. R., O'Connor, F. M., Barjat, H., Dewey, K., Kent, J., and Brough, N.: 25 Estimating photochemically produced ozone through a domain using flight data and a Lagrangian model, J. Geophys. Res., 108, 4271, doi:1029/2002JD002955, 2003.
    • Methven, J., Arnold, S. R., Stohl, A., et al.: Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the ICARTT experiment. J. Geophys. Res., 111, D23S62, doi:10.1029/2006JD007540, 2006.
    • 30 Minikin, A., Petzold, A., Fiebig, M., Hendricks, J., and Schro¨der, F.: Aerosol properties measured in situ in the free troposphere and tropopause region at midlatitudes, J. Aerosol Sci., Abstracts of the European Aerosol Conference 2003, S1155-S1156, 2003.
    • Morris, G. A., Hersey, S., Thompson, A. M., et al.: Alaskan and Canadian forest fires exacerbate ozone pollution over Houston, Texas, on 19 and 20 July 2004, J. Geopyhs Res., 111, D24S03, doi: 10.1029/2006JD007090, 2006.
    • Niemi, J. V., Tervahattu, H., Vehkama¨ki, H., Martikainen, J., Laakso, L., Kulmala, M., Aarnio, P., Koskental, T., Sillanpa¨a¨, M., and Makkonen, U.: Characterisation of aerosol particle episodes 5 in Finland caused by wildfires in Eastern Europe, Atmos. Chem. Phys., 5, 2299-2310, 2005, http://www.atmos-chem-phys.net/5/2299/2005/.
    • Nyeki, S., Kalberer, M., Colbeck, I., De Wekker, S., Furger, M., Ga¨ggeler, H. W., Kossmann, M., Lugauer, M., Steyn, D., Weingartner, E., Wirth, M., and Baltensperger, U.: Convective boundary layer evolution to 4 km asl over high-alpine terrain: Airborne lidar observations in 10 the Alps, Geophys. Res. Lett., 27, 689-692, 2000.
    • Nyeki, S., Eleftheriadis, K., Baltensperger, U., Colbeck, I., Fiebig, M., Fix, A., Kiemle, C., Lazaridis, M., and Petzold, A.: Airborne Lidar and in-situ aerosol observations of an elevated layer leeward of the European Alps and Apennines, Geophys. Res. Lett., 29, doi:10.1029/2002GL014897, 2002.
    • 15 Park, R. J., Jacob, D. J., Palmer, P. I., Clarke, A. D., Weber, R. J., Zondlo, M. A., Eisele, F. L., Bandy, A. R., Thornton, D. C., Sachse, G. W., and Bond, T. C.: Export efficiency of black carbon aerosol in continental outflow: Global implications, J. Geophys. Res., 110, D11205, doi:10.1029/2004JD005432, 2005.
    • Petzold, A., Fiebig, M., Flentje, H., Keil, A., Leiterer, U., Stifter, A., Wendisch, M., and Wendling, 20 P.: Vertical variability of aerosol properties observed at a continental site during LACE 98, J.
    • Geophys. Res., 107, 8128, doi:10.1029/2001JD001043, 2002.
    • Petzold, A., and Scho¨nlinner, M.: Multi-angle absorption photometry - a new method for the measurement of aerosol light absorption and atmospheric black carbon, J. Aerosol Sci., 35, 421-441, 2004.
    • 25 Petzold, A., Schloesser, H., Sheridan, P. J., Arnott, W. P., Ogren, J. A., and Virkkula, A.: Evaluation of multi-angle absorption photometry for measuring aerosol light absorption, Aerosol Sci. Technol., 39, 40-51, 2005.
    • Pfister, G. G., Emmons, L. K., Hess, P. G., et al.: Ozone production from the 2004 North American boreal fires, J. Geophys. Res., 111, D24S07, doi:10.1029/2006JD007695, 2006.
    • 30 Radke, L. F., Hegg, D. A., Hobbs, P. V., Nance, J. D., Lyons, J. H., Laursen, K. K., Weiss, R.
    • E., Riggan, P. J., and Ward, D. E.: Particulate and trace gas emissions from large biomass fires in North America. In: Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications (edited by: J. S. Levine), 209-224, MIT press, Cambridge, MA, 1991.
    • Raes, F., van Dingenen, R., Vignati, E., Wilson, J., Putaud, J.-P., Seinfeld, J.H., and Adams, P.: Formation and cycling of aerosols in the global atmosphere, Atmos. Env., 34, 4215-4240, 2000.
    • Rasch, P. J. and Williamson, D. L.: Computational aspects of moisture transport in global mod5 els of the atmosphere, Quart. J. R. Met. Soc., 116, 1071-1090, 1990.
    • Real, E., Law, K., Weinzierl, B., Fiebig, M., Petzold, A., Wild, O., Arnold, S., Huntrieser, H., Stohl, A., and Schlager, H.: Processes influencing O3 levels in Alaskan forest fire plumes during long range transport over the North Atlantic, J. Geophys. Res., in press, 2007.
    • Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emis10 sions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799-825, 2005a.
    • Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovnik, O., Eleuterio, D.P., Holben, B. N., Reid, E. A., and Zhang, J.: A review of biomass burning emissions part III: intensive optical properties of biomass burning particles, Atmos. Chem. Phys., 5, 827-849, 2005b.
    • 15 Reischl, G. P.: The relationship between input and output aerosol characteristics for an ideal differential mobility analyser particle standard, J. Aerosol Sci., 22, 297-312, 1991.
    • Robock, A.: Surface cooling due to forest fire smoke, J. Geophys. Res., 96, 20 869-20 878, 1991.
    • R o¨ckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Du¨ menil, L., Esch, M., 20 Giorgetta, M., Schlese, U., and Schulzweida, U.: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate, Max Planck Institute for Meteorology, Report No. 218, Hamburg, Germany, ISSN 0937-1060, 1996.
    • Rosenfeld, D.: Suppression of rain and snow by urban and industrial air pollution, Science, 287, 1793-1796, 2000.
    • 25 Sato, M., Hansen, J., Koch, D., Lacis, A., Ruedy, R., Dubovik, O., Holben, B., Chin, M., and Novakov, T.: Global atmospheric black carbon inferred from AERONET, Proc. Nat. Academy of Sci. (PNAS), 100, 6319-6324, 2003.
    • Schr o¨der, F. P. and Stro¨ m, J.: Aircraft measurements of sub micrometer aerosol particles (>7 nm) in the midlatitude free troposphere and tropopause region, Atmos. Res., 44, 333- 30 356, 1997.
    • Schr o¨der, F., Ka¨ rcher, B., Petzold, A., and Fiebig, M.: Aerosol states in the free troposphere at northern midlatitudes, J. Geophys. Res., 107, LAC 8-1-LAC 8-8, doi10.1029/2000JD000194, 2002.
    • M., Darbeheshti, M., Baumgardner, D. G., Kok, G. L., Chung, S. H., Schulz, M., Hendricks, J., Lauer, A., Ka¨rcher, B., Slowik, J. G., Rosenlof, K. H., Thompson, T. L., Langford, A. O., Loewenstein, M., and Aikin, K. C.: Single-particle measurements of midlatitude black carbon 5 and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys.
    • Res., 111, D16207, doi: 10.1029/2006JD007076, 2006.
    • Sheridan, P. J., Arnott, W. P., Ogren, J. A., Andrews, E., Atkinson, D. B., Covert, D. S., Moosmu¨ller, H., Petzold, A., Schmidt, B., Strawa, A. W., Varma, R., and Virkkula, A.: The Reno Aerosol Optics Study: Overview and Summary of Results, Aerosol Sci. Technol., 39, 10 1-16, 2005.
    • R., Canagaratna, M. R., Worsnop, D. R., Chakrabarty, R. K., Moosmu¨ller, H., Arnott, W. P., Schwarz, J. P., Gao, R.-S., Fahey, D. W., Kok, G. L., and Petzold, A.: An Inter-Comparison of Instruments Measuring Black Carbon Content of Soot Particles, Aerosol Sci. Technol., in 15 press, 2007.
    • Spichtinger, N., Damoah, R., Eckhardt, S., Forster, C., James, P., Beirle, S., Marbach, T., Wagner, T., Novelli, P.C., and Stohl, A.: Boreal forest fires in 1997 and 1998: a seasonal comparison using transport model simulations and measurement data, Atmos. Chem. Phys., 4, 1857-1868, 2004, http://www.atmos-chem-phys.net/4/1857/2004/.
    • 20 Stohl, A., Hittenberger, M., and Wotawa, G.: Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data, Atmos. Environ., 32, 4245- 4264, 1998.
    • Stohl, A., Forster, C., Eckhardt, S., Spichtinger, N., Huntrieser, H., Heland, J., Schlager, H., Wilhelm, S., Arnold, F., and Cooper, O.: A backward modeling study of intercon25 tinental pollution transport using aircraft measurements., J. Geophys. Res. 108, 4370, doi:10.1029/2002JD002862, 2003.
    • Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical Note : The Lagrangian particle dispersion model FLEXPART version 6.2., Atmos. Chem. Phys. 5, 2461-2474, 2005.
    • 30 A., Sharma, S., Spichtinger, N., Stebel, K., Stone, R., Stro¨m, J., Torseth, K., and Wehrli, C.: Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004, J. Geophys. Res., 111, D22214, doi:10.1029/2006JD007216, 2006.
    • Geophys. Res., 109, D24212, doi:10.1029/2994JD004902, 2004.
    • Turquety, S., Jacob, D. J., Jones, D. B., et al: High temporal resolution inverse modelling of CO emissions from North American boreal fires and their injection height during the summer 2004, Eos Trans. AGU, 87, Fall Meet. Suppl., Abstract A53G-04, 2006.
    • Twomey, S.: Pollution and the planetary albedo, Atmos. Environ, 8, 1251-1256, 1974.
    • F., Olsen, S. C., and Kasischke, E. S.: Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nin˜o/La Nin˜a period, Science, 303, 73-76, 2004.
    • van der Werf, G, Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatta, P. S., and Arellano Jr., A. F.: Interannual variability of global biomass burning emissions from 1997 to 2004, Atmos.
    • Chem. Phys., 6, 3423-3441, 2006, http://www.atmos-chem-phys.net/6/3423/2006/.
  • No related research data.
  • No similar publications.