LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
E. Erdogan; M. Schmidt; F. Seitz; M. Durmaz (2017)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809
Although the number of terrestrial global navigation satellite system (GNSS) receivers supported by the International GNSS Service (IGS) is rapidly growing, the worldwide rather inhomogeneously distributed observation sites do not allow the generation of high-resolution global ionosphere products. Conversely, with the regionally enormous increase in highly precise GNSS data, the demands on (near) real-time ionosphere products, necessary in many applications such as navigation, are growing very fast. Consequently, many analysis centers accepted the responsibility of generating such products. In this regard, the primary objective of our work is to develop a near real-time processing framework for the estimation of the vertical total electron content (VTEC) of the ionosphere using proper models that are capable of a global representation adapted to the real data distribution.

The global VTEC representation developed in this work is based on a series expansion in terms of compactly supported B-spline functions, which allow for an appropriate handling of the heterogeneous data distribution, including data gaps. The corresponding series coefficients and additional parameters such as differential code biases of the GNSS satellites and receivers constitute the set of unknown parameters. The Kalman filter (KF), as a popular recursive estimator, allows processing of the data immediately after acquisition and paves the way of sequential (near) real-time estimation of the unknown parameters. To exploit the advantages of the chosen data representation and the estimation procedure, the B-spline model is incorporated into the KF under the consideration of necessary constraints. Based on a preprocessing strategy, the developed approach utilizes hourly batches of GPS and GLONASS observations provided by the IGS data centers with a latency of 1 h in its current realization.

Two methods for validation of the results are performed, namely the self consistency analysis and a comparison with Jason-2 altimetry data. The highly promising validation results allow the conclusion that under the investigated conditions our derived near real-time product is of the same accuracy level as the so-called final post-processed products provided by the IGS with a latency of several days or even weeks.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anghel, A., Carrano, C., Komjathy, A., Astilean, A., and Letia, T.: Kalman filter-based algorithms for monitoring the ionosphere and plasmasphere with GPS in near-real time, J. Atmos. Sol.- Terr. Phys., 71, 158-174, doi:10.1016/j.jastp.2008.10.006, 2009.
    • Appleton, E. V.: Two Anomalies in the Ionosphere, Nature, 157, 691-691, doi:10.1038/157691a0, 1946.
    • Brown, R. G. and Hwang, P. Y. C.: Introduction to Random Signals and Applied Kalman Filtering: with MATLAB exercises, John Wiley & Sons, Inc., USA, 4th Edn., 2012.
    • Brunini, C., Camilion, E., and Azpilicueta, F.: Simulation study of the influence of the ionospheric layer height in the thin layer ionospheric model, J. Geodesy, 85, 637-645, doi:10.1007/s00190-011-0470-2, 2011.
    • Chen, P., Yao, Y., and Yao, W.: Global ionosphere maps based on GNSS, satellite altimetry, radio occultation and DORIS, GPS Solutions, 1-12, doi:10.1007/s10291-016-0554-9, 2016.
    • Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., and Radicella, S. M.: Calibration errors on experimental slant total electron content (TEC) determined with GPS, J. Geodesy, 81, 111-120, doi:10.1007/s00190-006-0093-1, 2007.
    • Dach, R., Hugentobler, U., Fridez, P., and Meindl, M.: Bernese GPS Software Version 5.0, Astronomical Institute, University of Bern, Staempfli Publications AG, available at: http://www. bernese.unibe.ch/docs50/DOCU50.pdf (last access: 18 February 2017), 2007.
    • Dettmering, D., Schmidt, M., Heinkelmann, R., and Seitz, M.: Combination of different space-geodetic observations for regional ionosphere modeling, J. Geodesy, 85, 989-998, doi:10.1007/s00190-010-0423-1, 2011.
    • Durmaz, M. and Karslioglu, M. O.: Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS), J. Geodesy, 89, 347-360, doi:10.1007/s00190-014-0779-8, 2015.
    • Durmaz, M., Karslioglu, M. O., and Nohutcu, M.: Regional VTEC modeling with multivariate adaptive regression splines, Adv. Space Res., 46, RS0D12, doi:10.1016/j.asr.2010.02.030, 2010.
    • Feltens, J., Angling, M., Jackson-Booth, N., Jakowski, N., Hoque, M., Hernández-Pajares, M., Aragón-Àngel, A., Orús, R., and Zandbergen, R.: Comparative testing of four ionospheric models driven with GPS measurements, Radio Sci., 46, RS0D12, doi:10.1029/2010RS004584, 2011.
    • Fu, L.-L. and Cazenave, A. (Eds.): Satellite Altimetry and Earth Sciences A Handbook of Techniques and Applications, Academic Press Inc., San Diego, California, 2001.
    • Gao, Y., Zhang, Y., and Chen, K.: Development of a realtime singlefrequency Precise Point Positioning system and test results, in: Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), 2297-2303, Fort Worth, TX, 2006.
    • Gelb, A. (Ed.): Applied Optimal Estimation, The MIT Press, Cambridge, 1974.
    • Grewal, M. S. and Andrews, A. P.: Kalman Filtering: Theory and Practice Using MATLAB, John Wiley & Sons, Inc., 3rd Edn., Hoboken, New Jersey, 2008.
    • Heelis, R. A.: Aspects of Coupling Processes in the Ionosphere and Thermosphere, in: Modeling the Ionosphere-Thermosphere System, 161-169, doi:10.1002/9781118704417.ch14, John Wiley & Sons, Ltd, 2014.
    • Hernández-Pajares, M., Juan, J., and Sanz, J.: New approaches in global ionospheric determination using ground GPS data, J. Atmos. Sol.-Terr. Phys., 61, 1237-1247, 1999.
    • Hernández-Pajares, M., Juan, J. M., Sanz, J., Aragón-Àngel, À., García-Rigo, A., Salazar, D., and Escudero, M.: The ionosphere: Effects, GPS modeling and the benefits for space geodetic techniques, J. Geodesy, 85, 887-907, doi:10.1007/s00190-011-0508- 5, 2011.
    • Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A., Ghoddousi-Fard, R., Yuan, Y., Li, Z., Zhang, H., Shi, C., Feltens, J., Komjathy, A., Vergados, P., Schaer, S., Garcia-Rigo, A., and Gómez-Cama, J. M.: Comparing performances of seven different global VTEC ionospheric models in the IGS context, in: International GNSS Service Workshop 2016, Sydney, Australia, 2016.
    • Jee, G., Burns, A. G., Wang, W., Solomon, S. C., Schunk, R. W., Scherliess, L., Thompson, D. C., Sojka, J. J., Zhu, L., and Scherliess, L.: Driving the TING Model with GAIM Electron Densities: Ionospheric Effects on the Thermosphere, J. Geophys. Res.- Space, 113, A03305, doi:10.1029/2007JA012580, 2008.
    • Kalman, R.: A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82, 35-45, 1960.
    • Komjathy, A.: Global ionospheric total electron content mapping using the Global Positioning System, PhD thesis, University of New Brunswick, available at: http://www2.unb.ca/gge/Pubs/ TR188.pdf (last access: 12 February 2017), 1997.
    • Komjathy, A. and Langley, R.: An assessment of predicted and measured ionospheric total electron content using a regional GPS network, in: Proceedings of the 1996 National Technical Meeting of The Institute of Navigation, 615-624, Santa Monica, CA, 1996.
    • Le, A., Tiberius, C., van der Marel, H., and Jakowski, N.: Use of Global and Regional Ionosphere Maps for Single-Frequency Precise Point Positioning, in: Observing our Changing Earth, edited by: Sideris, M. G., 759-769, doi:10.1007/978-3-540- 85426-5_87, Springer Berlin Heidelberg, 2009.
    • Lee, I. T., Matsuo, T., Richmond, A. D., Liu, J. Y., Wang, W., Lin, C. H., Anderson, J. L., and Chen, M. Q.: Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering, J. Geophys. Res., 117, A10318, doi:10.1029/2012JA017700, 2012.
    • Li, Z., Yuan, Y., Wang, N., Hernandez-Pajares, M., and Huo, X.: SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions, J. Geodesy, 89, 331-345, doi:10.1007/s00190-014-0778-9, 2015.
    • Limberger, M.: Ionosphere modeling from GPS radio occultations and complementary data based on B-splines, PhD thesis, Technischen Universität München, http://nbn-resolving.de/urn/ resolver.pl?urn:nbn:de:bvb:91-diss-20151006-1254715-1-1 (last access: 12 February 2017), 2015.
    • Limberger, M., Liang, W., Schmidt, M., Dettmering, D., and Hugentobler, U.: Regional representation of F2 Chapman parameters based on electron density profiles, Ann. Geophys., 31, 2215-2227, doi:10.5194/angeo-31-2215-2013, 2013.
    • Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Chen, Y. I., Pulinets, S. A., and Yu, S. B.: Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements, Ann. Geophys., 22, 1585-1593, doi:10.5194/angeo-22-1585-2004, 2004.
    • Liu, Z.: Ionosphere Tomographic Modeling and Applications Using Global Positioning System (GPS) Measurements, PhD thesis, University of Calgary, available at: http://www.ucalgary. ca/engo_webdocs/YG/04.20198.Zhizhao_Liu.pdf (last access: 12 February 2017), 2004.
    • Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C. H., Lindqwister, U. J., and Runge, T. F.: A global mapping technique for GPSderived ionospheric total electron content measurements, Radio Sci., 33, 565-582, doi:10.1029/97RS02707, 1998.
    • Maybeck, P. S.: Stochastic Models, Estimation and Control Volume I, Academic Press, New York, NY, 1979.
    • Mitchell, C. N. and Spencer, P. S. J.: A three-dimensional timedependent algorithm for ionospheric imaging using GPS, Annals of Geophysics, 46, 687-696, doi:10.4401/ag-4373, 2003.
    • Monte-Moreno, E. and Hernández-Pajares, M.: Occurrence of solar flares viewed with GPS: Statistics and fractal nature, J. Geophys. Res.-Space, 119, 9216-9227, doi:10.1002/2014JA020206, 2014.
    • Orus, R., Cander, L. R., and Hernandez-Pajares, M.: Testing regional vertical total electron content maps over Europe during the 17-21 January 2005 sudden space weather event, Radio Sci., 42, RS3004, doi:10.1029/2006RS003515, 2007.
    • Rovira-Garcia, A., Juan, J. M., Sanz, J., and Gonzalez-Casado, G.: A Worldwide Ionospheric Model for Fast Precise Point Positioning, IEEE T. Geosci. Remote Sens., 53, 4596-4604, doi:10.1109/TGRS.2015.2402598, 2015.
    • Schaer, S.: Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System, PhD thesis, University of Bern, Bern, 1999.
    • Scherliess, L., Schunk, R. W., Sojka, J. J., Thompson, D. C., and Zhu, L.: Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation, J. Geophys. Res., 111, A11315, doi:10.1029/2006JA011712, 2006.
    • Schmidt, M.: Wavelet modelling in support of IRI, Adv. Space Res., 39, 932-940, doi:10.1016/j.asr.2006.09.030, 2007.
    • Schmidt, M., Bilitza, D., Shum, C., and Zeilhofer, C.: Regional 4-D modeling of the ionospheric electron density, Adv. Space Res., 42, 782-790, doi:10.1016/j.asr.2007.02.050, 2008.
    • Schmidt, M., Dettmering, D., Mößmer, M., Wang, Y., and Zhang, J.: Comparison of spherical harmonic and B spline models for the vertical total electron content, Radio Sci., 46, RS0D11, doi:10.1029/2010RS004609, 2011.
    • Schmidt, M., Dettmering, D., and Seitz, F.: Using B-Spline Expansions for Ionosphere Modeling, in: Handbook of Geomathematics, edited by: Freeden, W., Nashed, M. Z., and Sonar, T., 939- 983, doi:10.1007/978-3-642-54551-1_80, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.
    • Schumaker, L. L. and Traas, C.: Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines, Numer. Math., 60, 133-144, doi:10.1007/BF01385718, 1991.
    • Schunk, R. W. and Nagy, A. F.: Ionosphere: Physics, Plasma Physics, and Chemistry, Cambridge University Press, New York, 2nd Edn., 2009.
    • Schunk, R. W., Scherliess, L., Sojka, J. J., Thompson, D. C., Anderson, D. N., Codrescu, M., Minter, C., Fuller-Rowell, T. J., Heelis, R. A., Hairston, M., and Howe, B. M.: Global Assimilation of Ionospheric Measurements (GAIM), Radio Sci., 39, RS1S02, doi:10.1029/2002RS002794, 2004.
    • Simon, D.: Kalman filtering with state equality constraints, IEEE T. Aero. Elec. Sys., 38, 128-136, doi:10.1109/7.993234, 2002.
    • Simon, D.: Optimal State Estimation, doi:10.1088/1741- 2560/2/3/S07, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.
    • Simon, D.: Kalman filtering with state constraints: a survey of linear and nonlinear algorithms, IET Control Theory & Applications, 4, 1303-1318, doi:10.1049/iet-cta.2009.0032, 2010.
    • Skone, S.: Wide area ionosphere grid modelling in the auroral region, PhD thesis, University of Calgary, available at: http://sirsi1.lib.ucalgary.ca/uhtbin/cgisirsi/0/0/0/5?library= UCALGARY-S&searchdata1=%5EC2619212 (last access: 12 February 2017), 1999.
    • Tseng, K.-H., Shum, C. K., Yi, Y., Dai, C., Lee, H., Bilitza, D., Komjathy, A., Kuo, C. Y., Ping, J., and Schmidt, M.: Regional Validation of Jason-2 Dual-Frequency Ionosphere Delays, Mar. Geodesy, 33, 272-284, doi:10.1080/01490419.2010.487801, 2010.
    • Wang, C., Rosen, I. G., Tsurutani, B. T., Verkhoglyadova, O. P., Meng, X., and Mannucci, A. J.: Statistical characterization of ionosphere anomalies and their relationship to space weather events, Journal of Space Weather and Space Climate, 6, A5, doi:10.1051/swsc/2015046, 2016.
    • Wang, N., Yuan, Y., Li, Z., Montenbruck, O., and Tan, B.: Determination of differential code biases with multi-GNSS observations, J. Geodesy, 90, 209-228, doi:10.1007/s00190-015-0867-4, 2015.
    • Yang, Y.: Adaptively Robust Kalman Filters with Applications in Navigation, in: Sciences of Geodesy - I, edited by: Xu, G., 49- 82, doi:10.1007/978-3-642-11741-1_2, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
    • Zeilhofer, C.: Multi-dimensional B-spline Modeling of Spatiotemporal Ionospheric Signals, Tech. Rep. 123, Deutsche Geodätische Kommission, München, 2008.
    • Zeilhofer, C., Schmidt, M., Bilitza, D., and Shum, C.: Regional 4-D modeling of the ionospheric electron density from satellite data and IRI, Adv. Space Res., 43, 1669-1675, doi:10.1016/j.asr.2008.09.033, 2009.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article