LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Karachevtseva, Iuliia; Dyskin, Arcady V.; Pasternak, Elena (2017)
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Geophysics
Stick-slip sliding is observed at various scales in fault sliding and the accompanied seismic events. It is conventionally assumed that the mechanism of stick-slip over geomaterials lies in the rate dependence of friction. However, the movement resembling the stick-slip could be associated with elastic oscillations of the rock around the fault, which occurs regardless of rate properties of the friction. In order to investigate this mechanism, two simple models were considered: a mass-spring model of Burridge and Knopoff type (BK model) and a one-dimensional (1D) model an infinite elastic rod driven by elastic shear spring.

The results show that frictional sliding in the case of BK model demonstrates stick-slip-like motion even when the friction coefficient is constant. The 1D rod model predicts that any initial disturbance moves with a p-wave velocity, that is supersonically with the amplitude of disturbances decreasing with time. This effect might provide an explanation to the observed supersonic rupture propagation over faults.

Share - Bookmark

Cite this article

Collected from