LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
O. N. Nasonova; Y. M. Gusev; E. M. Volodin; E. E. Kovalev (2015)
Publisher: Copernicus Publications
Journal: Proceedings of the International Association of Hydrological Sciences
Languages: English
Types: Article
Subjects: GE1-350, QE1-996.5, Environmental sciences, Geology
The objective of the present study is application of the land surface model SWAP to project climate change impact on northern Russian river runoff up to 2100 using meteorological projections from the atmosphere–ocean global climate model INMCM4.0. The study was performed for the Northern Dvina River and the Kolyma River characterized by different climatic conditions. The ability of both models to reproduce the observed river runoff was investigated. To apply SWAP for hydrological projections, the robustness of the model was evaluated. The river runoff projections up to 2100 were calculated for two greenhouse gas emission scenarios: RCP8.5 and RCP4.5 prepared for the phase five of the Coupled Model Intercomparison Project (CMIP5). For each scenario, several runoff projections were obtained using different models (INMCM4.0 and SWAP) and different post-processing techniques for correcting biases in meteorological forcing data. Differences among the runoff projections obtained for the same emission scenario and the same period illustrate uncertainties resulted from application of different models and bias-correcting techniques.
  • No references.
  • No related research data.
  • No similar publications.