Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Keiling , A.; Parks , G.K.; Rème , Henri; Dandouras , Iannis; Wilber , M.; Kistler , L.; Owen , C.; Fazakerley , A. N.; Lucek , E.; Maksimovic , M.; Cornilleau-Wehrlin , Nicole (2006)
Publisher: European Geosciences Union
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, [ PHYS.ASTR.CO ] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO], [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, ionosphere, wave-particle interactions, magnetospheric physics, auroral phenomena, magnetosphereionosphere interactions, TAIL LOBE BOUNDARY, HIGH-LATITUDE, ALIGNED CURRENTS, HIGH-ALTITUDE, MAGNETOTAIL, PARTICLE, BEAMS, DISTRIBUTIONS, PRECIPITATION, SPACECRAFT, [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, Science, Physics, QC1-999, QC801-809, [ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph]
Recent Cluster studies reported properties of multiple energy-dispersed ion structures in the plasma sheet boundary layer (PSBL) that showed substructure with several well separated ion beamlets, covering energies from 3 keV up to 100 keV (Keiling et al., 2004a, b). Here we report observations from two PSBL crossings, which show a number of identified one-to-one correlations between this beamlet substructure and several plasma-field characteristics: (a) bimodal ion conics (<1 keV), (b) field-aligned electron flow (<1 keV), (c) perpendicular electric field spikes (~20 mV/m), (d) broadband electrostatic ELF wave packets (<12.5 Hz), and (e) enhanced broadband electromagnetic waves (<4 kHz). The one-to-one correlations strongly suggest that these phenomena were energetically driven by the ion beamlets, also noting that the energy flux of the ion beamlets was 1–2 orders of magnitude larger than, for example, the energy flux of the ion outflow. In addition, several more loosely associated correspondences were observed within the extended region containing the beamlets: (f) electrostatic waves (BEN) (up to 4 kHz), (g) traveling and standing ULF Alfvén waves, (h) field-aligned currents (FAC), and (i) auroral emissions on conjugate magnetic field lines. Possible generation scenarios for these phenomena are discussed. In conclusion, it is argued that the free energy of magnetotail ion beamlets drove a variety of phenomena and that the spatial fine structure of the beamlets dictated the locations of where some of these phenomena occurred. This emphasizes the notion that PSBL ion beams are important for magnetosphere-ionosphere coupling. However, it is also shown that the dissipation of electromagnetic energy flux (at altitudes below Cluster) of the simultaneously occurring Alfvén waves and FAC was larger (FAC being the largest) than the dissipation of beam kinetic energy flux, and thus these two energy carriers contributed more to the energy transport on PSBL field lines from the distant magnetotail to the ionosphere than the ion beams.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alfve´n, H. and Fa¨lthammar, C. G.: Cosmical Electrodynamics, Clarendon, Oxford, England, 1963.
    • Andre, M. and Yau, A.: Theories and observations of ion energization and outflow in the high latitude magnetosphere, Space Sci. Rev., 80, 27-48, 1997.
    • Angelopoulos, V., Chapman, J. A., Mozer, F. S., et al.: Plasma sheet electromagnetic power generation and its dissipation along auroral field lines, J. Geophys. Res., 107, A8, doi:10.1029/2001JA900136, 2002.
    • Ashour-Abdalla, M. and Thorne, R. M.: The importance of electrostatic ion-cyclotron instability for quiet-time proton auroral precipitation, Geophys. Res. Lett., 4, 45-48, 1977.
    • Ashour-Abdalla, M., Zelenyi, L. M., Bosqued, J. M., and Kovrazhkin, R. A.: Precipitation of fast ion beams from the plasma sheet boundary layer, Geophys. Res. Lett., 19, 617-620, 1992.
    • Ashour-Abdalla, M., Bosqued, J. M., El-Alaoui, M., et al.: A stochastic sea: The source of plasma sheet boundary layer ion structures observed by Cluster, J. Geophys. Res., 110, A12, doi:10.1029/2005JA011183, 2005.
    • Backrud, M., Andre´, M., Balogh, A., et al.: Identification of broadband waves above the auroral acceleration region: Cluster observations, Ann. Geophys., 22, 4203-4216, 2004, http://www.ann-geophys.net/22/4203/2004/.
    • Bosqued, J. M., Ashour-Abdalla, M., El Alaoui, M., et al.: Dispersed ion structures at the poleward edge of the auroral oval: Low-altitude observations and numerical modeling, J. Geophys. Res., 98, 19 181-19 204, 1993.
    • Carlson, C. W., McFadden, J. P., Ergun, R. E., et al.: FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating, Geophys. Res. Lett., 25, 2017-2020, 1998.
    • Cattell, C.: Association of field-aligned currents with small-scale auroral phenomena, Geophys. Monograph, 28, 304-314, 1984.
    • Chaston, C. C., Carlson, C. W., Ergun, R. E., and McFadden, J. P.: Alfve´n Waves, Density Cavities and Electron Acceleration Observed from the FAST Spacecraft, Physica Scripta, T84, 64-68, 2000.
    • Chaston, C. C., Bonnell, J. W., Carlson, C. W., et al.: Auroral ion acceleration in dispersive Alfve´n waves, J. Geophys. Res., 109, A4, doi:10.1029/2003JA010053, 2004.
    • Dubinin, E. M., Israelevich, P. L., Nikolaeva, N. S., et al.: Auroral electromagnetic disturbances at an altitude of 900 km: The relationship between the electric and magnetic field variations, Planet. Space Sci., 38, 97-108, 1990.
    • Eastman, T. E., Frank, L. A., Peterson, W. K., and Lennartsson, W.: The plasma sheet boundary layer, J. Geophys. Res., 89, 1553- 1572, 1984.
    • Elphinstone, R.D., Hearn, D. J., Cogger, L. L., et al.: The double oval UV auroral distribution: 2. The most poleward arc system and the dynamics of the magnetotail, J. Geophys. Res., 100, 12 093-12 102, 1995.
    • Escoubet, C. P., Schmidt, R., and Goldstein, M. L.: Cluster - Science and Mission Overview, Space Sci. Rev., 79(1/2), 11-32, 1997.
    • Evans, D. S.: Precipitation electron flux formed by a magnetic-fieldaligned potential difference, J. Geophys. Res., 79, 2853-2863, 1974.
    • Forbes, T., Hones, E. W., Bame, S. J., et al.: Evidence for the tailward retreat of a magnetic neutral line in the magnetotail during substorm recovery, Geophys. Res. Lett., 8, 261-264, 1981.
    • Grabbe, C. L. and Eastman, T. E.: Generation of broadband electrostatic noise by ion beam instabilities in the magnetotail, J. Geophys. Res., 89, 3865-3872, 1984.
    • Grigorenko, E. E., Fedorov, A., and Zelenyi, L. M.: Statistical study of transient plasma structures in magnetotail lobes and plasma sheet boundary layer: Interball-1 observations, Ann. Geophys., 20, 329-340, 2002,
    • Gurnett, D. A., Frank, L. A., Lepping, R. P., et al.: Plasma waves in the distant magnetotail, J. Geophys. Res., 81, 6059-6071, 1976.
    • Hasegawa, A.: Beam production at plasma boundaries by kinetic Alfve´n waves, J. Geophys. Res., 92, 11 221-11 223, 1987.
    • Hirahara, M., Yamazaki, A., Seki, K., et al.: Characteristics of downward flowing ion energy dispersions observed in the lowaltitude central plasma sheet by Akebono and DMSP, J. Geophys. Res., 102, 4821-4840, 1997.
    • Hirahara, M., Horwitz, J. L., Moore, T. E., et al.: Relationship of topside ionospheric ion outflows to auroral forms and precipitation, plasma waves, and convection observed by Polar, J. Geophys. Res., 103, 17 391-17 410, 1998.
    • Hultqvist, B., Lundin, R., Stasiewicz, K., et al.: Simultaneous observations of upward moving field-aligned energetic electrons and ions on auroral zone field lines, J. Geophys. Res., 93, 9765- 9776, 1988.
    • Hultqvist, B.: On the acceleration of positive ions by high-altitude, large-amplitude electric filed fluctuations, J. Geophys. Res., 101, 27 111-27 122, 1996.
    • Janhunen, P., Olsson, A., Vaivads, A., and Peterson, W. K.: Generation of Bernstein waves by ion shell distributions in the auroral region, Ann. Geophys., 21, 1-11, 2003a.
    • Kan, J. R. and Akasofu, S.-J.: Energy source and mechanisms for accelerating the electrons and driving the field-aligned currents of the discrete auroral arc, J. Geophys. Res., 81, 5123-5130, 1976.
    • Kazama, Y. and Mukai, M.: Multiple energy-dispersed ion signatures in the near-Earth magnetotail: Geotail observation, Geophys. Res. Lett., 30, A7, doi:10.1029/2002GL016637, 2003.
    • Kazama, Y. and Mukai, M.: Simultaneous appearance of energydispersed ion signatures of ionospheric and magnetotail origins in the near-Earth plasma sheet, J. Geophys. Res., 110, A7, doi:10.1029/2004JA010820, 2005.
    • Keiling, A., Wygant, J. R., Cattell, C., et al.: Large Alfve´n wave power in the plasma sheet boundary layer during the expansion phase of substorms, Geophys. Res. Lett., 27, 3169-3172, 2000.
    • Keiling, A., Wygant, J. R., Cattell, C., et al.: Correlation of Alfve´n wave Poynting flux in the plasma sheet at 4-7 RE with ionospheric electron energy flux, J. Geophys. Res., 107, A7, doi:10.1029/2001JA900140, 2002.
    • Keiling, A., Re`me, H., Dandouras, I., et al.: New properties of energy-dispersed ions in the plasma sheet boundary layer observed by Cluster, J. Geophys. Res., 109, A5, doi:10.1029/2003JA010277, 2004a.
    • Keiling, A., Re`me, H., Dandouras, I., et al.: Transient ion beamlet injections into spatially separated PSBL flux tubes observed by Cluster-CIS, Geophys. Res. Lett., 31, A12, doi:10.1029/2004GL020192, 2004b.
    • Keiling, A., Parks, G. K., Re`me, H., et al.: Bouncing ion clusters in the plasma sheet boundary layer observed by Cluster-CIS, J. Geophys. Res., 110, A9, doi:10.1029/2004JA010497, 2005a.
    • Keiling, A., Parks, G. K., Wygant, J. R., et al.: Some properties of Alfve´n waves: Observations in the tail lobes and the plasma sheet boundary layer, J. Geophys. Res., 110, A10, doi:10.1029/2004JA010907, 2005b.
    • Kintner, P. M. and Gorney, D. I.: A search for the plasma processes associated with perpendicular ion heating, J. Geophys. Res., 89, 937-944, 1984.
    • Klumpar, D. M., Peterson, W. K., and Shelley, E. G.: Direct evidence for two-stage (bimodal) acceleration of ionospheric ions, J. Geophys. Res., 89, 10 779-10 787, 1984.
    • Lakhina, G. S., Tsurutani, B. T., Kojima, H., and Matsumoto, H.: Broadband plasma waves in the boundary layers, J. Geophys. Res., 105, 27 791-27 832, 2000.
    • Lennartsson, O. W., Trattner, K. J., Collin, H. L., and Peterson, W. K.: Polar/Toroidal Imaging Mass-Angle Spectrograph survey of earthward field-aligned proton flows from the nearmidnight tail, J. Geophys. Res., 106, 5859-5871, 2001.
    • Lennartsson, O. W.: In situ Polar observations of transverse coldion acceleration: Evidence that electric field generation is a hot ion finite gyroradii effect, J. Geophys. Res., 108, A4, doi:10.1029/2002JA009663, 2003.
    • Lui, A. T. Y., Frank, L. A., Ackerson, K. L., et al.: Plasma flows and magnetic field vectors in the plasma sheet during substorms, J. Geophys. Res., 83, 3849-3858, 1978.
    • Lyons, L. R. and Speiser, T. W.: Evidence for current sheet acceleration in the geomagnetic tail, J. Geophys. Res., 87, 2276-2286, 1982.
    • Lyons, L. R. and Evans, D. S.: An association between discrete aurora and energetic particle boundaries, J. Geophys. Res., 89, 2395-2400, 1984.
    • Mallinckrodt, A. J. and Carlson, C. W.: Relations between transverse electric fields and field-aligned currents, J. Geophys. Res., 83, 1426-1432, 1978.
    • Marghitu, O.: Observational evidence for a potential relationship between visible auroral arcs and ion beams - a case study, Phys. Chem. Earth, 26, 223-228, 2001.
    • Mozer, F. S., Cattell, C. A., Hudson, M. K., et al.: Satellite measurements and theories of low altitude auroral particle acceleration, Space Sci. Rev., 27, 155-213, 1980.
    • Olsson, A., Janhunen, P., and Peterson, W.: Ion shell distributions as free energy source for plasma waves on auroral field lines mapping to plasma sheet boundary layer, Ann. Geophys., 22, 2115- 2133, 2004, http://www.ann-geophys.net/22/2115/2004/.
    • Parks, G. K., McCarthy, M., Fitzenreiter, R. J., et al.: Particle and field characteristics of the high-latitude plasma sheet boundary layer, J. Geophys. Res., 89, 8885-8906, 1984.
    • Parks, G. K., Chen, L. J., McCarthy, M., et al.: New observations of ion beams in the plasma sheet boundary layer, Geophys. Res. Lett., 25, 3285-3288, 1998.
    • Peterson, W. K., Collin, H. L., Doherty, M. F., and Bjorklund, C. M.: O(+) and He(+) restricted and extended (bi-modal) ion conic distributions, Geophys. Res. Lett., 19, 1439-1442, 1992.
    • Reiff, P., Collin, H. L., Craven, J. D., et al.: Determination of auroral electrostatic potentials using high- and low-altitude particle distributions, J. Geophys. Res., 93, 7441-7465, 1988.
    • Sauvaud, J.-A., Popescu, D., Delcourt, D. C., et al.: Sporadic plasma sheet ion injections into the high-altitude auroral bulge: Satellite observations, J. Geophys. Res., 104, 28 565-28 577, 1999.
    • Sauvaud, J.-A. and Kovrazhkin, R. A.: Two types of energydispersed ion structures at the plasma sheet boundary, J. Geophys. Res., 109, A12, doi:10.1029/2003JA010333, 2004.
    • Schindler, K. and Birn, J.: On the generation of field-aligned plasma flow at the boundary of the plasma sheet, J. Geophys. Res., 92, 95-107, 1987.
    • Schriver, D. and Ashour-Abdalla, M.: Broadband electrostatic noise due to field-aligned currents, Geophys. Res. Lett., 16, 899-902, 1989.
    • Schriver, D., Ashour-Abdalla, M., Treumann, R., et al.: The lobe to plasma sheet boundary layer transition - Theory and observations, Geophys. Res. Lett., 17, 2027-2030, 1990.
    • Schriver, D.: Particle simulation of the auroral zone showing parallel electric fields, waves, and plasma acceleration, J. Geophys. Res., 104, 14 655-14 670, 1999.
    • Schriver, D., Ashour-Abdalla, M., Strangeway, R. J., et al.: FAST/Polar conjunction study of field-aligned auroral acceleration and corresponding magnetotail drivers, J. Geophys. Res., 108, A9, doi:10.1029/2002JA009426, 2003.
    • Sergeev, V. A., Sauvaud, J.-A., Popescu, D., et al.: Plasma sheet ion injections into the auroral bulge: Correlative study of spacecraft and ground observations, J. Geophys. Res., 105, 18 465-18 481, 2000.
    • Sergeev, V. A., Sauvaud, J.-A., Re`me, H., et al.: Sharp boundary between the inner magnetosphere and active outer plasma sheet, Geophys. Res. Lett., 30, A15, doi:10.1029/2003GL017095, 2003.
    • Strangeway, R. J., Ergun, R. E., Su, Y.-J., et al.: Factors controlling ionospheric outflows as observed at intermediate altitudes, J. Geophys. Res., 110, A3, doi:10.1029/2004JA010829, 2005.
    • Takada, T., Seki, K., Hirahara, M., et al.: Statistical properties of low-frequency waves and ion beams in the plasma sheet boundary layer: Geotail observations, J. Geophys. Res., 110, A2, doi:10.1029/2004JA010395, 2005.
    • Takahashi, K. and Hones Jr., E. W.: ISEE 1 and 2 observations of ion distributions at the plasma sheet-tail lobe boundary, J. Geophys. Res., 93, 8558-8582, 1988.
    • Wygant, J. R., Keiling, A., Cattell, C. A., et al.: Polar-spacecraft based comparison of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora, J. Geophys. Res., 105, 18 675- 18 692, 2000.
    • Wygant, J. R., Keiling, A., Cattell, C. A., et al.: Evidence for kinetic Alfve´n waves and parallel electron energization at 5-7 RE altitudes in the plasma sheet boundary layer, J. Geophys. Res., 107, A8, doi:10.1029/2001JA900113, 2002.
    • Wygant, J. R., Cattell, C. A., Lysak, R., et al.: Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region, J. Geophys. Res., 110, A9, doi:10.1029/2004JA010708, 2005.
    • Yau, A. and Andre, M.: Sources of ion outflow in the high latitude ionosphere, Space Sci. Rev., 80, 1-25, 1997.
    • Zelenyi, L. M., Kovrazkhin, R. A., and Bosqued, J. M.: Velocitydispersed ion beams in the nightside auroral zone - AUREOL 3 observations, J. Geophys. Res., 95, 12 119-12 139, 1990.
    • Zelenyi, L. M., Grigorenko, E. E., and Fedorov, A. O.: Spatialtemporal ion structures in the Earth's magnetotail: Beamlets as a result of nonadiabatic impulse acceleration of the plasma, JETP Lett., 80, 663-673, 2004.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.