Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Y. Cuypers; P. Bouruet-Aubertot; C. Marec; J.-L. Fuda (2012)
Publisher: Copernicus Publications
Journal: Biogeosciences
Languages: English
Types: Article
Subjects: Ecology, QH540-549.5, QE1-996.5, QH501-531, Geology, Life
One of the main purposes of the BOUM experiment was to find evidence of the possible impact of submesoscale dynamics on biogeochemical cycles. To this aim physical as well as biogeochemical data were collected along a zonal transect through the western and eastern basins of the Mediterranean Sea. Along this transect 3-day fixed point stations were performed within anticyclonic eddies during which microstructure measurements of the temperature gradient were collected over the top 100 m of the water column. We focus here on the characterization of turbulent mixing. The analysis of microstructure measurements revealed a high level of turbulent kinetic energy (TKE) dissipation rate in the seasonal pycnocline and a moderate level below with mean values of the order of 10<sup>&minus;6</sup> W kg<sup>−1</sup> and 10<sup>&minus;8</sup> W kg<sup>−1</sup>, respectively. The Gregg Henyey (Gregg, 1989) fine-scale parameterization of TKE dissipation rate produced by internal wave breaking, and adapted here following Polzin et al. (1995) to take into account the strain to shear ratio, was first compared to these direct measurements with favorable results. The parameterization was then applied to the whole data set. Within the eddies, a significant increase of dissipation at the top and base of eddies associated with strong near-inertial waves is observed. Vertical turbulent diffusivity is increased both in these regions and in the weakly stratified eddy core. The stations collected along the East–West transect provide an overview of parameterized TKE dissipation rates and vertical turbulent diffusivity over a latitudinal section of the Mediterranean Sea. Strong TKE dissipation rates are found within the first 500 m and up to 1500 m above the bottom. Close to the bottom where the stratification is weak, the inferred vertical turbulent diffusivity can reach <I>K</I><sub>z</sub>&simeq;10<sup>&minus;3</sup> m<sup>2</sup> s<sup>−1</sup> and may therefore have a strong impact on the upward diffusive transport of deep waters masses.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alford, M. H.: Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment, J. Phys. Oceanogr., 40, 2643-2660, 2010.
    • Alford, M. H. and Pinkel, R.: Observations of overturning in the thermocline: The context of ocean mixing, J. Phys. Oceanogr., 30, 805-832, 2000.
    • Baker, M. A. and Gibson, C. H.: Sampling turbulence in the stratified ocean: statistical consequences of strong intermittency, J. Phys. Oceanogr., 17, 1817-1836, 1987.
    • Beranger, K., Mortier, L., Gasparini, G. P., Gervasio, L., Astraldi, M., and Crepon, M.: The dynamics of the Sicily Strait: a comprehensive study from observations and models, Deep Sea Res. II, 51, 411-440, 2004.
    • Bonnet, S., Grosso, O., and Moutin, T.: Planktonic dinitrogen fixation along a longitudinal gradient across the Mediterranean Sea during the stratified period (BOUM cruise), Biogeosciences, 8, 2257-2267, doi:10.5194/bg-8-2257-2011, 2011.
    • Bouche, V., Falcini, F., and Salusti, E.: Coherent abyssal eddies observed over the KM4 site from a single mooring in the Ionian Sea (Central Mediterranean Sea), Proceedings of Dynamics of Mediterranean Deep Waters, Malta, 2009.
    • Bouruet-Aubertot, P., Mercier, H., Gaillard, F., and Lherminier, P.: Evidence of strong inertia-gravity wave activity during the POMME experiment, J. Geophys. Res., 110, C07S06, doi:10.1029/2004JC002747, 2005.
    • Cairns, J. L. and Williams, G. O.: Internal wave observations from a midwater float, 2, J. Geophys. Res., 81, 1943-1950, 1976.
    • Copin-Montegut, C.: Consumption and production on scales of a few days of inorganic carbon, nitrate and oxygen by the planktonic community: results of continuous measurements at the DYFAMED Station in the northwestern Mediterranean Sea (May 1995), Deep-Sea Res. I, 47, 447-477, 2000.
    • Davis, R. E.: Sampling turbulent dissipation, J. Phys. Oceanogr., 26, 341-358, 1996.
    • Denman, K. L. and Gargett, A. E.: Time and space scales of vertical mixing and advection of phtoplankton in the upper ocean, Limnol. Oceanogr., 28, 801-815, 1983.
    • Efron, B. and Tibshirani, R. J.: An Introduction to the Bootstrap, Chapman & Hall/CRC, 1994.
    • Gargett, A. E.: Do We Really Know How to Scale the Turbulent Kinetic Energy Dissipation Rate? Due to Breaking of Oceanic Internal Waves?, J. Geophys. Res., 95, 15971-15974, 1990.
    • Gargett, A. E.: Velcro Measurement of Turbulence Kinetic Energy Dissipation Rate , J. Atmos. Oceanic Technol., 16, 1973-1993, 1999.
    • Gargett, A. E., Hendricks, P. J., Sanford, T. B., Osborn, T. R., and Williams, A. J.: A Composite Spectrum of Vertical Shear in the Upper Ocean, J. Phys. Oceanogr., 11, 1258-1271, 1981.
    • Garrett, C. and Kunze, E.: Internal Tide Generation in the Deep Ocean, Annu. Rev. Fluid Mech., 39, 57-87, 2007.
    • Garrett, C. and Munk, W.: Internal waves in the ocean, Annu. Rev. Fluid Mech., 11, 339-369, 1979.
    • Gregg, M. C.: Scaling turbulent dissipation in the thermocline, J. Geophys. Res., 94, 9686-9698, 1989.
    • Gregg, M. C., Seim, H. E., and Percival, D. B.: Statistics of shear and turbulent dissipation profiles in random internal wave fields, J. Phys. Oceanogr., 23, 1777-1799, 1993.
    • Gregg, M. C., Sandford, T. B., and Winkel, D. P.: Reduced mixing from the breaking of internal waves in equatorial waters, Nature, 422, 513-515, 2003.
    • Gregg, M. C., Alford, M. H., Kontoyiannis, H., Zervakis, V., and Winkel, D.: Mixing over the steep side of the Cycladic Plateau in the Aegean Sea, J. Mar. Syst., 89, 30-47, 2012.
    • Greenan, B. H. J.: Shear and Richardson number in a mode-water eddy, Deep Sea Res. Pt. II, 55, 1151-1178, 2008.
    • Henyey, F. S., Wright, J., and Flatte, S. M.: Energy and action flow through the internal wave field, J. Geophys. Res., 91, 8487-8495, 1986.
    • Kim, D., Kitack, L., Sung-Deuk, C., Hee-Sook, K., Jia-Zhong, Z., and Yoon-Seok, C.: Determination of diapycnal diffusion rates in the upper thermocline in the North Atlantic Ocean using sulfur hexafluoride, J. Geophys. Res., 110, C10010, doi:10.1029/2004JC002835, 2005.
    • Klein, P. and Lapeyre, G.: The Oceanic Vertical Pump Induced by Mesoscale and Submesoscale Turbulence, Annu. Rev. Mar. Sci., 1, 351-375, 2009.
    • Kunze, E.: Near-inertial wave propagation in geostrophic shear, J. Phys. Oceanogr., 14, 544-565, 1985.
    • Kunze, E.: The energy balance in a warm-core ring's near-inertial critical layer, J. Phys. Oceanogr., 25, 942-957, 1995.
    • Kunze, E., Firing, E., Hummon, J. M., Chereskin, T. K., and Thurnherr, A. M.: Global abyssal mixin inferred from Lowered ADCP shear and CTD strain profiles, J. Phys Oceanogr., 36, 1553-1576, 2006.
    • Lascaratos, A.: Estimation of deep and intermediate water mass formation rates in the Mediterranean Sea, Deep-Sea Res. II, 40, 1327-1332, 1993.
    • Lascaratos, A., Roether, W., Nittis, K., and Klein, B.: Recent changes in deep water formation and spreading in the eastern Mediterranean Sea: a review, Prog. Oceanogr., 44, 5-36, 1999.
    • Law, C. S., Martin, A. P., Liddicoat, M. I., Watson, A. J., Richards, K. J., and Woodward, E. M. S.: A Lagrangian SF6 tracer study of anticyclonic eddy in the North Atlantic: Patch evolution, vertical mixing and nutrient supply to the mixed layer, Deep Sea Res., Part II, 48, 705-724, 2001.
    • Ledwell, J. R., McGillicuddy, D. J., and Anderson, L. A.: Nutrient flux into an intense deep chlorophyll layer in a mode-water eddy, Deep Sea Res. II, 55, 1139-1160, 2008.
    • Lee, D. K. and Niiler, P. P.: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer, J. Geophys. Res., 103, 7579-7591, 1998.
    • Lewis, M. R., Harrison, W. G., Oakey, N. S., Hebert, D., and Platt, T.: Vertical nitrate flux in the Oligotrophic Ocean, Science, 234, 870-873, 1986.
    • Martin, A. P. and Richards, K. J.: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy, Deep-Sea Res. II, 48, 757-773, 2001.
    • Mauriac, R., Moutin, T., and Baklouti, M.: Accumulation of DOC in Low Phosphate Low Chlorophyll (LPLC) area: is it related to higher production under high N:P ratio?, Biogeosciences, 8, 933-950, doi:10.5194/bg-8-933-2011, 2011.
    • McGillicuddy, D. J., Johnson, R., Siegel, D. A., Michaels, A. F., Bates, N. R., and Knap, A. H.: Mesoscale variations of biogeochemical properties in the Sargasso Sea, J. Geophys. Res., 104, 13381-13394, 1999.
    • Moutin, T. and Prieur, L.: Influence of anticyclonic eddies on the Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean Sea, Biogesosciences Discuss., in preparation, 2012.
    • Moutin, T. and Raimbault, P.: Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise), J. Marine. Sys., 33- 34, 273-288, 2002.
    • Munk, W. and Wunsch, C.: Abyssal recipes II: Energetics of tidal and wind mixing, Deep Sea Res. II, 45, 1977-2010, 1998.
    • Nikurashin, M. and Ferrari, R.: Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory, J. Phys. Oceanogr., 40, 1055- 1074, 2010a.
    • Nikurashin, M. and Ferrari, R.: Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Application to the Southern Ocean, J. Phys. Oceanogr., 40, 2025-2042, 2010b.
    • Osborn, T. R.: Estimates of the local rate of vertical diffusion from dissipation measurements, J. Phys. Oceanogr., 10, 83-89, 1980.
    • Polzin, K. L., Toole, J. M., and Schmitt, R. W.: Finescale parameterizations of turbulent dissipation, J. Phys. Oceanogr., 25, 306- 328, 1995.
    • Priestley, M. B.: Spectral Analysis and Time Series. Academic Press, 890 pp. 1981.
    • Ruddick, B., Anis, A., and Thompson, K.: Maximum Likelihood Spectral Fitting: The Batchelor Spectrum, J. Atmos. Oceanic Technol., 17, 1541-1554, 2000.
    • Shih, L. H., Koseff, J. R., Ivey, G. N., and Ferziger, J.: Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations, J. Fluid Mech., 525, 193- 214, 2005.
    • Smyth, W. D., Poliakov, P. O., and Moum, J. N.: Decay of Turbulence in the Upper Ocean following Sudden Isolation from Surface Forcing, J. Phys. Oceanogr., 27, 810-822, 1997.
    • Stansfield, K., Smeed, D. A., Gasparini, G. P., McPhail, S., Millard, N., Stevenson, P., Webb, A., Vetrano, A., and Rabe, B.: Deep-sea, high-resolution, hydrography and current measurements using an autonomous underwater vehicle: The overflow from the Strait of Sicily, Geophys. Res. Lett., 28, 2645-2648, 2001.
    • Steinbuck, J. V., Stacey, M. T., and Monismith, S. G.: An Evaluation of χT Estimation Techniques: Implications for Batchelor Fitting and , J. Atmos. Oceanic Technol., 26, 1652-1662, 2009.
    • Thorpe, S. A.: Recent developments in the study of ocean turbulence, Annual Review of Earth and Planeraty Sciences, 32, 91- 109, 2004.
    • Touratier, F., Guglielmi, V., Goyet, C., Prieur, L., Pujo-Pay, M., Conan, P., and Falco, C.: Distributions of the carbonate system properties, anthropogenic CO2, and acidification during the 2008 BOUM cruise (Mediterranean Sea), Biogeosciences Discuss., 9, 2709-2753, doi:10.5194/bgd-9-2709-2012, 2012.
    • Waterman, S. N., Naveira Garabato, A. C., and Polzin, K. L.: Observations of internal waves and turbulence in the antartic circumpolar current, Ocean sciences meeting, Salt Lake City, 20-24 February 2012.
    • Woods, J. D. and Wiley, R. L.: Billow turbulence and ocean microstructure, Deep Sea Res., 19, 87-121, 1972.
    • Zavatarelli, M. and Mellor, G. L.: A numerical study of the Mediterranean sea circulation, J. Phys. Oceanogr., 25, 1384-1414, 1994.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article