Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, Yunfan; Tian, Fenglin; Chen, Ge (2016)
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Physics::Fluid Dynamics, Physics::Geophysics, Astrophysics::Earth and Planetary Astrophysics
In this paper we present a research of propagation characteristics of global Rossby wave and mesoscale eddies, and we preliminarily discussing the relationship between them from multiple datasets analysis. By filtering the MSLA-H data and by means of optimized SSH method we have extracted signals of the Rossby wave, and estimated the propagation speed (zonal phase speed) of the Rossby wave and eddies. Validation for the identification of the Rossby wave also has been completed with the Argo temperature and salinity data. The prime focus covers: propagation speed comparison between the Rossby wave and the eddies, propagation characteristics in different regions. Overlaying the signals of the Rossby wave with the signatures of the eddies indicates that the Rossby wave and the eddies propagates together (westward only) in the mid-latitude, but differences appear with increasing of latitude, especially in some areas affected by ocean current, for instance, the West Wind Drift(WWD) and the North Atlantic Drift(NAD). Actually we have found that the currents led the eddies, and the Rossby wave might play an accelerative or moderative role in the eddies propagation, as a result of the velocities of the eddies and the currents were matched well, but comparison between the Rossby wave and the eddies revealed disparity. The findings are useful for understanding the relationship between the Rossby wave and mesoscale eddies.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from