LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hibert, Clément; Malet, Jean-Philippe; Bourrier, Franck; Provost, Floriane; Berger, Frédéric; Bornemann, Pierrick; Tardif, Pascal; Mermin, Eric (2017)
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Geophysics
We conducted controlled releases of single blocks within a soft-rock (black marls) gully of the Rioux Bourdoux torrent (French Alps). 28 blocks, with masses ranging from 76 kg to 472 kg, were used for the experiment. An instrumentation combining video cameras and seismometers was deployed along the traveled path. The video cameras allow to reconstruct the trajectories of the blocks and to estimate their velocities at the time of the different impacts with the slope. These data are compared to the recorded seismic signals. As the distance between the falling block and the seismic sensors at the time of each impact is known, we were able to determine the associated seismic signal amplitude corrected from propagation and attenuation effects. We compared the velocity, the loss of potential energy, the kinetic energy and the momentum of the block at each impact to the true amplitude and the energy of the corresponding part of the seismic signal. Our results suggest that the amplitude of the seismic signal scales with the momentum of the block at the impact. We also found a scaling law between the potential energy lost, the kinetic energy and the energy of the seismic radiation generated by the impacts. By combining these scaling laws, we inferred the mass and the velocity before impact of each block directly from the seismic signal. Despite high uncertainties, the values found are close to the true values of the mass and the velocities of the blocks. These relationships also provide new insights to understand the source of high-frequency seismic signals generated by rockfalls.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from